QGIS/python/plugins/processing/algs/qgis/RandomSelectionWithinSubsets.py
2017-12-14 18:04:12 +02:00

140 lines
5.4 KiB
Python

# -*- coding: utf-8 -*-
"""
***************************************************************************
RandomSelectionWithinSubsets.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
# This will get replaced with a git SHA1 when you do a git archive
__revision__ = '$Format:%H$'
import os
import random
from qgis.PyQt.QtGui import QIcon
from qgis.core import (QgsFeatureRequest,
QgsProcessingException,
QgsProcessingUtils,
QgsProcessingParameterVectorLayer,
QgsProcessingParameterEnum,
QgsProcessingParameterField,
QgsProcessingParameterNumber,
QgsProcessingParameterFeatureSink,
QgsProcessingOutputVectorLayer)
from collections import defaultdict
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class RandomSelectionWithinSubsets(QgisAlgorithm):
INPUT = 'INPUT'
METHOD = 'METHOD'
NUMBER = 'NUMBER'
FIELD = 'FIELD'
OUTPUT = 'OUTPUT'
def icon(self):
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'sub_selection.png'))
def group(self):
return self.tr('Vector selection')
def groupId(self):
return 'vectorselection'
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.methods = [self.tr('Number of selected features'),
self.tr('Percentage of selected features')]
self.addParameter(QgsProcessingParameterVectorLayer(self.INPUT,
self.tr('Input layer')))
self.addParameter(QgsProcessingParameterField(self.FIELD,
self.tr('ID field'), None, self.INPUT))
self.addParameter(QgsProcessingParameterEnum(self.METHOD,
self.tr('Method'), self.methods, False, 0))
self.addParameter(QgsProcessingParameterNumber(self.NUMBER,
self.tr('Number/percentage of selected features'),
QgsProcessingParameterNumber.Integer,
10, False, 0.0, 999999999999.0))
self.addOutput(QgsProcessingOutputVectorLayer(self.OUTPUT, self.tr('Selected (stratified random)')))
def name(self):
return 'randomselectionwithinsubsets'
def displayName(self):
return self.tr('Random selection within subsets')
def processAlgorithm(self, parameters, context, feedback):
layer = self.parameterAsVectorLayer(parameters, self.INPUT, context)
method = self.parameterAsEnum(parameters, self.METHOD, context)
field = self.parameterAsString(parameters, self.FIELD, context)
index = layer.fields().lookupField(field)
unique = layer.uniqueValues(index)
featureCount = layer.featureCount()
value = self.parameterAsInt(parameters, self.NUMBER, context)
if method == 0:
if value > featureCount:
raise QgsProcessingException(
self.tr('Selected number is greater that feature count. '
'Choose lesser value and try again.'))
else:
if value > 100:
raise QgsProcessingException(
self.tr("Percentage can't be greater than 100. Set a "
"different value and try again."))
value = value / 100.0
total = 100.0 / (featureCount * len(unique)) if featureCount else 1
if not len(unique) == featureCount:
classes = defaultdict(list)
features = layer.getFeatures(QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry).setSubsetOfAttributes([index]))
for i, feature in enumerate(features):
if feedback.isCanceled():
break
classes[feature.attributes()[index]].append(feature.id())
feedback.setProgress(int(i * total))
selran = []
for subset in classes.values():
if feedback.isCanceled():
break
selValue = value if method != 1 else int(round(value * len(subset), 0))
selran.extend(random.sample(subset, selValue))
layer.selectByIds(selran)
else:
layer.selectByIds(list(range(featureCount))) # FIXME: implies continuous feature ids
return {self.OUTPUT: parameters[self.INPUT]}