mirror of
https://github.com/qgis/QGIS.git
synced 2025-02-23 00:02:38 -05:00
396 lines
12 KiB
C
396 lines
12 KiB
C
/*
|
|
* Copyright Tim (xtimor@gmail.com)
|
|
*
|
|
* NMEA library is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>
|
|
*/
|
|
/*
|
|
*
|
|
* NMEA library
|
|
* URL: http://nmea.sourceforge.net
|
|
* Author: Tim (xtimor@gmail.com)
|
|
* Licence: http://www.gnu.org/licenses/lgpl.html
|
|
* $Id: gmath.c 17 2008-03-11 11:56:11Z xtimor $
|
|
*
|
|
*/
|
|
|
|
//! \file gmath.h
|
|
|
|
#include "gmath.h"
|
|
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
/**
|
|
* \fn nmea_degree2radian
|
|
* \brief Convert degree to radian
|
|
*/
|
|
double nmea_degree2radian( double val )
|
|
{ return ( val * NMEA_PI180 ); }
|
|
|
|
/**
|
|
* \fn nmea_radian2degree
|
|
* \brief Convert radian to degree
|
|
*/
|
|
double nmea_radian2degree( double val )
|
|
{ return ( val / NMEA_PI180 ); }
|
|
|
|
/**
|
|
* \brief Convert NDEG (NMEA degree) to fractional degree
|
|
*/
|
|
double nmea_ndeg2degree( double val )
|
|
{
|
|
double deg = ( ( int )( val / 100 ) );
|
|
val = deg + ( val - deg * 100 ) / 60;
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* \brief Convert fractional degree to NDEG (NMEA degree)
|
|
*/
|
|
double nmea_degree2ndeg( double val )
|
|
{
|
|
double int_part;
|
|
double fra_part;
|
|
fra_part = modf( val, &int_part );
|
|
val = int_part * 100 + fra_part * 60;
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* \fn nmea_ndeg2radian
|
|
* \brief Convert NDEG (NMEA degree) to radian
|
|
*/
|
|
double nmea_ndeg2radian( double val )
|
|
{ return nmea_degree2radian( nmea_ndeg2degree( val ) ); }
|
|
|
|
/**
|
|
* \fn nmea_radian2ndeg
|
|
* \brief Convert radian to NDEG (NMEA degree)
|
|
*/
|
|
double nmea_radian2ndeg( double val )
|
|
{ return nmea_degree2ndeg( nmea_radian2degree( val ) ); }
|
|
|
|
/**
|
|
* \brief Calculate PDOP (Position Dilution Of Precision) factor
|
|
*/
|
|
double nmea_calc_pdop( double hdop, double vdop )
|
|
{
|
|
return sqrt( pow( hdop, 2 ) + pow( vdop, 2 ) );
|
|
}
|
|
|
|
double nmea_dop2meters( double dop )
|
|
{ return ( dop * NMEA_DOP_FACTOR ); }
|
|
|
|
double nmea_meters2dop( double meters )
|
|
{ return ( meters / NMEA_DOP_FACTOR ); }
|
|
|
|
/**
|
|
* \brief Calculate distance between two points
|
|
* \return Distance in meters
|
|
*/
|
|
double nmea_distance(
|
|
const nmeaPOS *from_pos, //!< From position in radians
|
|
const nmeaPOS *to_pos //!< To position in radians
|
|
)
|
|
{
|
|
double dist = ( ( double )NMEA_EARTHRADIUS_M ) * acos(
|
|
sin( to_pos->lat ) * sin( from_pos->lat ) +
|
|
cos( to_pos->lat ) * cos( from_pos->lat ) * cos( to_pos->lon - from_pos->lon )
|
|
);
|
|
return dist;
|
|
}
|
|
|
|
/**
|
|
* \brief Calculate distance between two points
|
|
* This function uses an algorithm for an oblate spheroid earth model.
|
|
* The algorithm is described here:
|
|
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
|
|
* \return Distance in meters
|
|
*/
|
|
double nmea_distance_ellipsoid(
|
|
const nmeaPOS *from_pos, //!< From position in radians
|
|
const nmeaPOS *to_pos, //!< To position in radians
|
|
double *from_azimuth, //!< (O) azimuth at "from" position in radians
|
|
double *to_azimuth //!< (O) azimuth at "to" position in radians
|
|
)
|
|
{
|
|
/* All variables */
|
|
double f, a, b, sqr_a, sqr_b;
|
|
double L, phi1, phi2, U1, U2, sin_U1, sin_U2, cos_U1, cos_U2;
|
|
double sigma, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, sqr_cos_alpha, lambda, sin_lambda, cos_lambda, delta_lambda;
|
|
int remaining_steps;
|
|
double sqr_u, A, B, delta_sigma;
|
|
|
|
/* Check input */
|
|
NMEA_ASSERT( from_pos != 0 );
|
|
NMEA_ASSERT( to_pos != 0 );
|
|
|
|
if ( ( from_pos->lat == to_pos->lat ) && ( from_pos->lon == to_pos->lon ) )
|
|
{
|
|
/* Identical points */
|
|
if ( from_azimuth != 0 )
|
|
*from_azimuth = 0;
|
|
if ( to_azimuth != 0 )
|
|
*to_azimuth = 0;
|
|
return 0;
|
|
} /* Identical points */
|
|
|
|
/* Earth geometry */
|
|
f = NMEA_EARTH_FLATTENING;
|
|
a = NMEA_EARTH_SEMIMAJORAXIS_M;
|
|
b = ( 1 - f ) * a;
|
|
sqr_a = a * a;
|
|
sqr_b = b * b;
|
|
|
|
/* Calculation */
|
|
L = to_pos->lon - from_pos->lon;
|
|
phi1 = from_pos->lat;
|
|
phi2 = to_pos->lat;
|
|
U1 = atan( ( 1 - f ) * tan( phi1 ) );
|
|
U2 = atan( ( 1 - f ) * tan( phi2 ) );
|
|
sin_U1 = sin( U1 );
|
|
sin_U2 = sin( U2 );
|
|
cos_U1 = cos( U1 );
|
|
cos_U2 = cos( U2 );
|
|
|
|
/* Initialize iteration */
|
|
sigma = 0;
|
|
sin_sigma = sin( sigma );
|
|
cos_sigma = cos( sigma );
|
|
cos_2_sigmam = 0;
|
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
|
|
sqr_cos_alpha = 0;
|
|
lambda = L;
|
|
sin_lambda = sin( lambda );
|
|
cos_lambda = cos( lambda );
|
|
delta_lambda = lambda;
|
|
remaining_steps = 20;
|
|
|
|
while ( ( delta_lambda > 1e-12 ) && ( remaining_steps > 0 ) )
|
|
{
|
|
/* Iterate */
|
|
/* Variables */
|
|
double tmp1, tmp2, sin_alpha, cos_alpha, C, lambda_prev;
|
|
|
|
/* Calculation */
|
|
tmp1 = cos_U2 * sin_lambda;
|
|
tmp2 = cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda;
|
|
sin_sigma = sqrt( tmp1 * tmp1 + tmp2 * tmp2 );
|
|
cos_sigma = sin_U1 * sin_U2 + cos_U1 * cos_U2 * cos_lambda;
|
|
sin_alpha = cos_U1 * cos_U2 * sin_lambda / sin_sigma;
|
|
cos_alpha = cos( asin( sin_alpha ) );
|
|
sqr_cos_alpha = cos_alpha * cos_alpha;
|
|
cos_2_sigmam = cos_sigma - 2 * sin_U1 * sin_U2 / sqr_cos_alpha;
|
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
|
|
C = f / 16 * sqr_cos_alpha * ( 4 + f * ( 4 - 3 * sqr_cos_alpha ) );
|
|
lambda_prev = lambda;
|
|
sigma = asin( sin_sigma );
|
|
lambda = L +
|
|
( 1 - C ) * f * sin_alpha
|
|
* ( sigma + C * sin_sigma * ( cos_2_sigmam + C * cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) ) );
|
|
delta_lambda = lambda_prev - lambda;
|
|
if ( delta_lambda < 0 ) delta_lambda = -delta_lambda;
|
|
sin_lambda = sin( lambda );
|
|
cos_lambda = cos( lambda );
|
|
remaining_steps--;
|
|
} /* Iterate */
|
|
|
|
/* More calculation */
|
|
sqr_u = sqr_cos_alpha * ( sqr_a - sqr_b ) / sqr_b;
|
|
A = 1 + sqr_u / 16384 * ( 4096 + sqr_u * ( -768 + sqr_u * ( 320 - 175 * sqr_u ) ) );
|
|
B = sqr_u / 1024 * ( 256 + sqr_u * ( -128 + sqr_u * ( 74 - 47 * sqr_u ) ) );
|
|
delta_sigma = B * sin_sigma * (
|
|
cos_2_sigmam + B / 4 * (
|
|
cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) -
|
|
B / 6 * cos_2_sigmam * ( -3 + 4 * sin_sigma * sin_sigma ) * ( -3 + 4 * sqr_cos_2_sigmam )
|
|
) );
|
|
|
|
/* Calculate result */
|
|
if ( from_azimuth != 0 )
|
|
{
|
|
double tan_alpha_1 = cos_U2 * sin_lambda / ( cos_U1 * sin_U2 - sin_U1 * cos_U2 * cos_lambda );
|
|
*from_azimuth = atan( tan_alpha_1 );
|
|
}
|
|
if ( to_azimuth != 0 )
|
|
{
|
|
double tan_alpha_2 = cos_U1 * sin_lambda / ( -sin_U1 * cos_U2 + cos_U1 * sin_U2 * cos_lambda );
|
|
*to_azimuth = atan( tan_alpha_2 );
|
|
}
|
|
|
|
return b * A * ( sigma - delta_sigma );
|
|
}
|
|
|
|
/**
|
|
* \brief Horizontal move of point position
|
|
*/
|
|
int nmea_move_horz(
|
|
const nmeaPOS *start_pos, //!< Start position in radians
|
|
nmeaPOS *end_pos, //!< Result position in radians
|
|
double azimuth, //!< Azimuth (degree) [0, 359]
|
|
double distance //!< Distance (km)
|
|
)
|
|
{
|
|
nmeaPOS p1 = *start_pos;
|
|
int RetVal = 1;
|
|
|
|
distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
|
|
azimuth = nmea_degree2radian( azimuth );
|
|
|
|
end_pos->lat = asin(
|
|
sin( p1.lat ) * cos( distance ) + cos( p1.lat ) * sin( distance ) * cos( azimuth ) );
|
|
end_pos->lon = p1.lon + atan2(
|
|
sin( azimuth ) * sin( distance ) * cos( p1.lat ), cos( distance ) - sin( p1.lat ) * sin( end_pos->lat ) );
|
|
|
|
if ( NMEA_POSIX( isnan )( end_pos->lat ) || NMEA_POSIX( isnan )( end_pos->lon ) )
|
|
{
|
|
end_pos->lat = 0;
|
|
end_pos->lon = 0;
|
|
RetVal = 0;
|
|
}
|
|
|
|
return RetVal;
|
|
}
|
|
|
|
/**
|
|
* \brief Horizontal move of point position
|
|
* This function uses an algorithm for an oblate spheroid earth model.
|
|
* The algorithm is described here:
|
|
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
|
|
*/
|
|
int nmea_move_horz_ellipsoid(
|
|
const nmeaPOS *start_pos, //!< Start position in radians
|
|
nmeaPOS *end_pos, //!< (O) Result position in radians
|
|
double azimuth, //!< Azimuth in radians
|
|
double distance, //!< Distance (km)
|
|
double *end_azimuth //!< (O) Azimuth at end position in radians
|
|
)
|
|
{
|
|
/* Variables */
|
|
double f, a, b, sqr_a, sqr_b;
|
|
double phi1, tan_U1, sin_U1, cos_U1, s, alpha1, sin_alpha1, cos_alpha1;
|
|
double sigma1, sin_alpha, sqr_cos_alpha, sqr_u, A, B;
|
|
double sigma_initial, sigma, sigma_prev, sin_sigma, cos_sigma, cos_2_sigmam, sqr_cos_2_sigmam, delta_sigma;
|
|
int remaining_steps;
|
|
double tmp1, phi2, lambda, C, L;
|
|
|
|
/* Check input */
|
|
NMEA_ASSERT( start_pos != 0 );
|
|
NMEA_ASSERT( end_pos != 0 );
|
|
|
|
if ( fabs( distance ) < 1e-12 )
|
|
{
|
|
/* No move */
|
|
*end_pos = *start_pos;
|
|
if ( end_azimuth != 0 ) *end_azimuth = azimuth;
|
|
return !( NMEA_POSIX( isnan )( end_pos->lat ) || NMEA_POSIX( isnan )( end_pos->lon ) );
|
|
} /* No move */
|
|
|
|
/* Earth geometry */
|
|
f = NMEA_EARTH_FLATTENING;
|
|
a = NMEA_EARTH_SEMIMAJORAXIS_M;
|
|
b = ( 1 - f ) * a;
|
|
sqr_a = a * a;
|
|
sqr_b = b * b;
|
|
|
|
/* Calculation */
|
|
phi1 = start_pos->lat;
|
|
tan_U1 = ( 1 - f ) * tan( phi1 );
|
|
cos_U1 = 1 / sqrt( 1 + tan_U1 * tan_U1 );
|
|
sin_U1 = tan_U1 * cos_U1;
|
|
s = distance;
|
|
alpha1 = azimuth;
|
|
sin_alpha1 = sin( alpha1 );
|
|
cos_alpha1 = cos( alpha1 );
|
|
sigma1 = atan2( tan_U1, cos_alpha1 );
|
|
sin_alpha = cos_U1 * sin_alpha1;
|
|
sqr_cos_alpha = 1 - sin_alpha * sin_alpha;
|
|
sqr_u = sqr_cos_alpha * ( sqr_a - sqr_b ) / sqr_b;
|
|
A = 1 + sqr_u / 16384 * ( 4096 + sqr_u * ( -768 + sqr_u * ( 320 - 175 * sqr_u ) ) );
|
|
B = sqr_u / 1024 * ( 256 + sqr_u * ( -128 + sqr_u * ( 74 - 47 * sqr_u ) ) );
|
|
|
|
/* Initialize iteration */
|
|
sigma_initial = s / ( b * A );
|
|
sigma = sigma_initial;
|
|
sin_sigma = sin( sigma );
|
|
cos_sigma = cos( sigma );
|
|
cos_2_sigmam = cos( 2 * sigma1 + sigma );
|
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
|
|
delta_sigma = 0;
|
|
sigma_prev = 2 * NMEA_PI;
|
|
remaining_steps = 20;
|
|
|
|
while ( ( fabs( sigma - sigma_prev ) > 1e-12 ) && ( remaining_steps > 0 ) )
|
|
{
|
|
/* Iterate */
|
|
cos_2_sigmam = cos( 2 * sigma1 + sigma );
|
|
sqr_cos_2_sigmam = cos_2_sigmam * cos_2_sigmam;
|
|
sin_sigma = sin( sigma );
|
|
cos_sigma = cos( sigma );
|
|
delta_sigma = B * sin_sigma * (
|
|
cos_2_sigmam + B / 4 * (
|
|
cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) -
|
|
B / 6 * cos_2_sigmam * ( -3 + 4 * sin_sigma * sin_sigma ) * ( -3 + 4 * sqr_cos_2_sigmam )
|
|
) );
|
|
sigma_prev = sigma;
|
|
sigma = sigma_initial + delta_sigma;
|
|
remaining_steps --;
|
|
} /* Iterate */
|
|
|
|
/* Calculate result */
|
|
tmp1 = ( sin_U1 * sin_sigma - cos_U1 * cos_sigma * cos_alpha1 );
|
|
phi2 = atan2(
|
|
sin_U1 * cos_sigma + cos_U1 * sin_sigma * cos_alpha1,
|
|
( 1 - f ) * sqrt( sin_alpha * sin_alpha + tmp1 * tmp1 )
|
|
);
|
|
lambda = atan2(
|
|
sin_sigma * sin_alpha1,
|
|
cos_U1 * cos_sigma - sin_U1 * sin_sigma * cos_alpha1
|
|
);
|
|
C = f / 16 * sqr_cos_alpha * ( 4 + f * ( 4 - 3 * sqr_cos_alpha ) );
|
|
L = lambda -
|
|
( 1 - C ) * f * sin_alpha * (
|
|
sigma + C * sin_sigma *
|
|
( cos_2_sigmam + C * cos_sigma * ( -1 + 2 * sqr_cos_2_sigmam ) )
|
|
);
|
|
|
|
/* Result */
|
|
end_pos->lon = start_pos->lon + L;
|
|
end_pos->lat = phi2;
|
|
if ( end_azimuth != 0 )
|
|
{
|
|
*end_azimuth = atan2(
|
|
sin_alpha, -sin_U1 * sin_sigma + cos_U1 * cos_sigma * cos_alpha1
|
|
);
|
|
}
|
|
return !( NMEA_POSIX( isnan )( end_pos->lat ) || NMEA_POSIX( isnan )( end_pos->lon ) );
|
|
}
|
|
|
|
/**
|
|
* \brief Convert position from INFO to radians position
|
|
*/
|
|
void nmea_info2pos( const nmeaINFO *info, nmeaPOS *pos )
|
|
{
|
|
pos->lat = nmea_ndeg2radian( info->lat );
|
|
pos->lon = nmea_ndeg2radian( info->lon );
|
|
}
|
|
|
|
/**
|
|
* \brief Convert radians position to INFOs position
|
|
*/
|
|
void nmea_pos2info( const nmeaPOS *pos, nmeaINFO *info )
|
|
{
|
|
info->lat = nmea_radian2ndeg( pos->lat );
|
|
info->lon = nmea_radian2ndeg( pos->lon );
|
|
}
|