mirror of
				https://github.com/qgis/QGIS.git
				synced 2025-10-30 00:07:09 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			146 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # -*- coding: utf-8 -*-
 | |
| 
 | |
| """
 | |
| ***************************************************************************
 | |
|     RandomSelectionWithinSubsets.py
 | |
|     ---------------------
 | |
|     Date                 : August 2012
 | |
|     Copyright            : (C) 2012 by Victor Olaya
 | |
|     Email                : volayaf at gmail dot com
 | |
| ***************************************************************************
 | |
| *                                                                         *
 | |
| *   This program is free software; you can redistribute it and/or modify  *
 | |
| *   it under the terms of the GNU General Public License as published by  *
 | |
| *   the Free Software Foundation; either version 2 of the License, or     *
 | |
| *   (at your option) any later version.                                   *
 | |
| *                                                                         *
 | |
| ***************************************************************************
 | |
| """
 | |
| 
 | |
| __author__ = 'Victor Olaya'
 | |
| __date__ = 'August 2012'
 | |
| __copyright__ = '(C) 2012, Victor Olaya'
 | |
| 
 | |
| import os
 | |
| import random
 | |
| 
 | |
| from qgis.PyQt.QtGui import QIcon
 | |
| 
 | |
| from qgis.core import (QgsApplication,
 | |
|                        QgsFeatureRequest,
 | |
|                        QgsProcessingException,
 | |
|                        QgsProcessingUtils,
 | |
|                        QgsProcessingAlgorithm,
 | |
|                        QgsProcessingParameterVectorLayer,
 | |
|                        QgsProcessingParameterEnum,
 | |
|                        QgsProcessingParameterField,
 | |
|                        QgsProcessingParameterNumber,
 | |
|                        QgsProcessingParameterFeatureSink,
 | |
|                        QgsProcessingOutputVectorLayer)
 | |
| from collections import defaultdict
 | |
| from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
 | |
| 
 | |
| pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
 | |
| 
 | |
| 
 | |
| class RandomSelectionWithinSubsets(QgisAlgorithm):
 | |
|     INPUT = 'INPUT'
 | |
|     METHOD = 'METHOD'
 | |
|     NUMBER = 'NUMBER'
 | |
|     FIELD = 'FIELD'
 | |
|     OUTPUT = 'OUTPUT'
 | |
| 
 | |
|     def icon(self):
 | |
|         return QgsApplication.getThemeIcon("/algorithms/mAlgorithmSelectRandom.svg")
 | |
| 
 | |
|     def svgIconPath(self):
 | |
|         return QgsApplication.iconPath("/algorithms/mAlgorithmSelectRandom.svg")
 | |
| 
 | |
|     def group(self):
 | |
|         return self.tr('Vector selection')
 | |
| 
 | |
|     def groupId(self):
 | |
|         return 'vectorselection'
 | |
| 
 | |
|     def __init__(self):
 | |
|         super().__init__()
 | |
| 
 | |
|     def flags(self):
 | |
|         return super().flags() | QgsProcessingAlgorithm.FlagNoThreading
 | |
| 
 | |
|     def initAlgorithm(self, config=None):
 | |
|         self.methods = [self.tr('Number of selected features'),
 | |
|                         self.tr('Percentage of selected features')]
 | |
| 
 | |
|         self.addParameter(QgsProcessingParameterVectorLayer(self.INPUT,
 | |
|                                                             self.tr('Input layer')))
 | |
|         self.addParameter(QgsProcessingParameterField(self.FIELD,
 | |
|                                                       self.tr('ID field'), None, self.INPUT))
 | |
|         self.addParameter(QgsProcessingParameterEnum(self.METHOD,
 | |
|                                                      self.tr('Method'), self.methods, False, 0))
 | |
|         self.addParameter(QgsProcessingParameterNumber(self.NUMBER,
 | |
|                                                        self.tr('Number/percentage of selected features'),
 | |
|                                                        QgsProcessingParameterNumber.Integer,
 | |
|                                                        10, False, 0.0))
 | |
|         self.addOutput(QgsProcessingOutputVectorLayer(self.OUTPUT, self.tr('Selected (stratified random)')))
 | |
| 
 | |
|     def name(self):
 | |
|         return 'randomselectionwithinsubsets'
 | |
| 
 | |
|     def displayName(self):
 | |
|         return self.tr('Random selection within subsets')
 | |
| 
 | |
|     def processAlgorithm(self, parameters, context, feedback):
 | |
|         layer = self.parameterAsVectorLayer(parameters, self.INPUT, context)
 | |
|         method = self.parameterAsEnum(parameters, self.METHOD, context)
 | |
|         field = self.parameterAsString(parameters, self.FIELD, context)
 | |
| 
 | |
|         index = layer.fields().lookupField(field)
 | |
| 
 | |
|         unique = layer.uniqueValues(index)
 | |
|         featureCount = layer.featureCount()
 | |
| 
 | |
|         value = self.parameterAsInt(parameters, self.NUMBER, context)
 | |
|         if method == 0:
 | |
|             if value > featureCount:
 | |
|                 raise QgsProcessingException(
 | |
|                     self.tr('Selected number is greater that feature count. '
 | |
|                             'Choose lesser value and try again.'))
 | |
|         else:
 | |
|             if value > 100:
 | |
|                 raise QgsProcessingException(
 | |
|                     self.tr("Percentage can't be greater than 100. Set a "
 | |
|                             "different value and try again."))
 | |
|             value = value / 100.0
 | |
| 
 | |
|         total = 100.0 / (featureCount * len(unique)) if featureCount else 1
 | |
| 
 | |
|         if not len(unique) == featureCount:
 | |
|             classes = defaultdict(list)
 | |
| 
 | |
|             features = layer.getFeatures(QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry).setSubsetOfAttributes([index]))
 | |
| 
 | |
|             for i, feature in enumerate(features):
 | |
|                 if feedback.isCanceled():
 | |
|                     break
 | |
| 
 | |
|                 classes[feature[index]].append(feature.id())
 | |
|                 feedback.setProgress(int(i * total))
 | |
| 
 | |
|             selran = []
 | |
|             for k, subset in classes.items():
 | |
|                 if feedback.isCanceled():
 | |
|                     break
 | |
| 
 | |
|                 selValue = value if method != 1 else int(round(value * len(subset), 0))
 | |
|                 if selValue > len(subset):
 | |
|                     selValue = len(subset)
 | |
|                     feedback.reportError(self.tr('Subset "{}" is smaller than requested number of features.'.format(k)))
 | |
|                 selran.extend(random.sample(subset, selValue))
 | |
| 
 | |
|             layer.selectByIds(selran)
 | |
|         else:
 | |
|             layer.selectByIds(list(range(featureCount)))  # FIXME: implies continuous feature ids
 | |
| 
 | |
|         return {self.OUTPUT: parameters[self.INPUT]}
 |