mirror of
https://github.com/qgis/QGIS.git
synced 2025-02-28 00:17:30 -05:00
TauDEM is quite specific set of tools and it requires installation of some additional tools. So we decide to turn it into separate provider, reducing core codebase size and maintenance efforts. Tagged as feature to not forget mention in changelog and documentation
263 lines
10 KiB
Python
263 lines
10 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
"""
|
|
***************************************************************************
|
|
AlgorithmsTest.py
|
|
---------------------
|
|
Date : January 2016
|
|
Copyright : (C) 2016 by Matthias Kuhn
|
|
Email : matthias@opengis.ch
|
|
***************************************************************************
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
***************************************************************************
|
|
"""
|
|
from __future__ import print_function
|
|
from builtins import zip
|
|
from builtins import str
|
|
from builtins import object
|
|
|
|
__author__ = 'Matthias Kuhn'
|
|
__date__ = 'January 2016'
|
|
__copyright__ = '(C) 2016, Matthias Kuhn'
|
|
|
|
# This will get replaced with a git SHA1 when you do a git archive
|
|
|
|
__revision__ = ':%H$'
|
|
|
|
|
|
import qgis # NOQA switch sip api
|
|
|
|
import os
|
|
import yaml
|
|
import nose2
|
|
import gdal
|
|
import shutil
|
|
import glob
|
|
import hashlib
|
|
import tempfile
|
|
|
|
from osgeo.gdalconst import GA_ReadOnly
|
|
from numpy import nan_to_num
|
|
|
|
import processing
|
|
from processing.modeler.ModelerAlgorithmProvider import ModelerAlgorithmProvider
|
|
from processing.algs.qgis.QGISAlgorithmProvider import QGISAlgorithmProvider
|
|
from processing.algs.grass7.Grass7AlgorithmProvider import Grass7AlgorithmProvider
|
|
from processing.algs.lidar.LidarToolsAlgorithmProvider import LidarToolsAlgorithmProvider
|
|
from processing.algs.gdal.GdalAlgorithmProvider import GdalAlgorithmProvider
|
|
from processing.algs.otb.OTBAlgorithmProvider import OTBAlgorithmProvider
|
|
from processing.algs.r.RAlgorithmProvider import RAlgorithmProvider
|
|
from processing.algs.saga.SagaAlgorithmProvider import SagaAlgorithmProvider
|
|
from processing.script.ScriptAlgorithmProvider import ScriptAlgorithmProvider
|
|
from processing.preconfigured.PreconfiguredAlgorithmProvider import PreconfiguredAlgorithmProvider
|
|
|
|
|
|
from qgis.core import QgsVectorLayer, QgsRasterLayer, QgsProject
|
|
|
|
from qgis.testing import _UnexpectedSuccess
|
|
|
|
from utilities import unitTestDataPath
|
|
|
|
|
|
def processingTestDataPath():
|
|
return os.path.join(os.path.dirname(__file__), 'testdata')
|
|
|
|
|
|
class AlgorithmsTest(object):
|
|
|
|
in_place_layers = {}
|
|
|
|
def test_algorithms(self):
|
|
"""
|
|
This is the main test function. All others will be executed based on the definitions in testdata/algorithm_tests.yaml
|
|
"""
|
|
ver = processing.version()
|
|
with open(os.path.join(processingTestDataPath(), self.test_definition_file()), 'r') as stream:
|
|
algorithm_tests = yaml.load(stream)
|
|
|
|
for algtest in algorithm_tests['tests']:
|
|
yield self.check_algorithm, algtest['name'], algtest
|
|
|
|
def check_algorithm(self, name, defs):
|
|
"""
|
|
Will run an algorithm definition and check if it generates the expected result
|
|
:param name: The identifier name used in the test output heading
|
|
:param defs: A python dict containing a test algorithm definition
|
|
"""
|
|
QgsProject.instance().removeAllMapLayers()
|
|
|
|
params = self.load_params(defs['params'])
|
|
|
|
alg = processing.Processing.getAlgorithm(defs['algorithm']).getCopy()
|
|
|
|
if isinstance(params, list):
|
|
for param in zip(alg.parameters, params):
|
|
param[0].setValue(param[1])
|
|
else:
|
|
for k, p in list(params.items()):
|
|
alg.setParameterValue(k, p)
|
|
|
|
for r, p in list(defs['results'].items()):
|
|
alg.setOutputValue(r, self.load_result_param(p))
|
|
|
|
expectFailure = False
|
|
if 'expectedFailure' in defs:
|
|
exec(('\n'.join(defs['expectedFailure'][:-1])), globals(), locals())
|
|
expectFailure = eval(defs['expectedFailure'][-1])
|
|
|
|
if expectFailure:
|
|
try:
|
|
alg.execute()
|
|
self.check_results(alg.getOutputValuesAsDictionary(), defs['params'], defs['results'])
|
|
except Exception:
|
|
pass
|
|
else:
|
|
raise _UnexpectedSuccess
|
|
else:
|
|
alg.execute()
|
|
self.check_results(alg.getOutputValuesAsDictionary(), defs['params'], defs['results'])
|
|
|
|
def load_params(self, params):
|
|
"""
|
|
Loads an array of parameters
|
|
"""
|
|
if isinstance(params, list):
|
|
return [self.load_param(p) for p in params]
|
|
elif isinstance(params, dict):
|
|
return {key: self.load_param(p, key) for key, p in list(params.items())}
|
|
else:
|
|
return params
|
|
|
|
def load_param(self, param, id=None):
|
|
"""
|
|
Loads a parameter. If it's not a map, the parameter will be returned as-is. If it is a map, it will process the
|
|
parameter based on its key `type` and return the appropriate parameter to pass to the algorithm.
|
|
"""
|
|
try:
|
|
if param['type'] in ('vector', 'raster', 'table'):
|
|
return self.load_layer(id, param)
|
|
elif param['type'] == 'multi':
|
|
return [self.load_param(p) for p in param['params']]
|
|
elif param['type'] == 'file':
|
|
return self.filepath_from_param(param)
|
|
elif param['type'] == 'interpolation':
|
|
prefix = processingTestDataPath()
|
|
tmp = ''
|
|
for r in param['name'].split(';'):
|
|
v = r.split(',')
|
|
tmp += '{},{},{},{};'.format(os.path.join(prefix, v[0]),
|
|
v[1], v[2], v[3])
|
|
return tmp[:-1]
|
|
except TypeError:
|
|
# No type specified, use whatever is there
|
|
return param
|
|
|
|
raise KeyError("Unknown type '{}' specified for parameter".format(param['type']))
|
|
|
|
def load_result_param(self, param):
|
|
"""
|
|
Loads a result parameter. Creates a temporary destination where the result should go to and returns this location
|
|
so it can be sent to the algorithm as parameter.
|
|
"""
|
|
if param['type'] in ['vector', 'file', 'table', 'regex']:
|
|
outdir = tempfile.mkdtemp()
|
|
self.cleanup_paths.append(outdir)
|
|
basename = os.path.basename(param['name'])
|
|
filepath = os.path.join(outdir, basename)
|
|
return filepath
|
|
elif param['type'] == 'rasterhash':
|
|
outdir = tempfile.mkdtemp()
|
|
self.cleanup_paths.append(outdir)
|
|
basename = 'raster.tif'
|
|
filepath = os.path.join(outdir, basename)
|
|
return filepath
|
|
|
|
raise KeyError("Unknown type '{}' specified for parameter".format(param['type']))
|
|
|
|
def load_layer(self, id, param):
|
|
"""
|
|
Loads a layer which was specified as parameter.
|
|
"""
|
|
filepath = self.filepath_from_param(param)
|
|
|
|
try:
|
|
# check if alg modifies layer in place
|
|
if param['in_place']:
|
|
tmpdir = tempfile.mkdtemp()
|
|
self.cleanup_paths.append(tmpdir)
|
|
path, file_name = os.path.split(filepath)
|
|
base, ext = os.path.splitext(file_name)
|
|
for file in glob.glob(os.path.join(path, '{}.*'.format(base))):
|
|
shutil.copy(os.path.join(path, file), tmpdir)
|
|
filepath = os.path.join(tmpdir, file_name)
|
|
self.in_place_layers[id] = filepath
|
|
except:
|
|
pass
|
|
|
|
if param['type'] in ('vector', 'table'):
|
|
lyr = QgsVectorLayer(filepath, param['name'], 'ogr')
|
|
elif param['type'] == 'raster':
|
|
lyr = QgsRasterLayer(filepath, param['name'], 'gdal')
|
|
|
|
self.assertTrue(lyr.isValid(), 'Could not load layer "{}"'.format(filepath))
|
|
QgsProject.instance().addMapLayer(lyr)
|
|
return lyr
|
|
|
|
def filepath_from_param(self, param):
|
|
"""
|
|
Creates a filepath from a param
|
|
"""
|
|
prefix = processingTestDataPath()
|
|
if 'location' in param and param['location'] == 'qgs':
|
|
prefix = unitTestDataPath()
|
|
|
|
return os.path.join(prefix, param['name'])
|
|
|
|
def check_results(self, results, params, expected):
|
|
"""
|
|
Checks if result produced by an algorithm matches with the expected specification.
|
|
"""
|
|
for id, expected_result in list(expected.items()):
|
|
if expected_result['type'] in ('vector', 'table'):
|
|
expected_lyr = self.load_layer(id, expected_result)
|
|
if 'in_place_result' in expected_result:
|
|
result_lyr = QgsVectorLayer(self.in_place_layers[id], id, 'ogr')
|
|
else:
|
|
try:
|
|
results[id]
|
|
except KeyError as e:
|
|
raise KeyError('Expected result {} does not exist in {}'.format(str(e), list(results.keys())))
|
|
|
|
result_lyr = QgsVectorLayer(results[id], id, 'ogr')
|
|
|
|
compare = expected_result.get('compare', {})
|
|
|
|
self.assertLayersEqual(expected_lyr, result_lyr, compare=compare)
|
|
|
|
elif 'rasterhash' == expected_result['type']:
|
|
dataset = gdal.Open(results[id], GA_ReadOnly)
|
|
dataArray = nan_to_num(dataset.ReadAsArray(0))
|
|
strhash = hashlib.sha224(dataArray.data).hexdigest()
|
|
|
|
self.assertEqual(strhash, expected_result['hash'])
|
|
elif 'file' == expected_result['type']:
|
|
expected_filepath = self.filepath_from_param(expected_result)
|
|
result_filepath = results[id]
|
|
|
|
self.assertFilesEqual(expected_filepath, result_filepath)
|
|
elif 'regex' == expected_result['type']:
|
|
with open(results[id], 'r') as file:
|
|
data = file.read()
|
|
|
|
for rule in expected_result.get('rules', []):
|
|
self.assertRegexpMatches(data, rule)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
nose2.main()
|