2016-08-22 15:56:30 +02:00

171 lines
7.5 KiB
XML

<root>
<key>TrainRegression-rf</key>
<exec>otbcli_TrainRegression</exec>
<longname>TrainRegression (rf)</longname>
<group>Learning</group>
<description>Train a classifier from multiple images to perform regression.</description>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputImageList">ParameterMultipleInput</parameter_type>
<key>io.il</key>
<name>Input Image List</name>
<description>A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.</description>
<datatype />
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
<key>io.csv</key>
<name>Input CSV file</name>
<description>Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given</description>
<isFolder />
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_InputFilename">ParameterFile</parameter_type>
<key>io.imstat</key>
<name>Input XML image statistics file</name>
<description>Input XML file containing the mean and the standard deviation of the input images.</description>
<isFolder />
<optional>True</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_OutputFilename">OutputFile</parameter_type>
<key>io.out</key>
<name>Output regression model</name>
<description>Output file containing the model estimated (.txt format).</description>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>io.mse</key>
<name>Mean Square Error</name>
<description>Mean square error computed with the validation predictors</description>
<minValue />
<maxValue />
<default>0.0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mt</key>
<name>Maximum training predictors</name>
<description>Maximum number of training predictors (default = 1000) (no limit = -1).</description>
<minValue />
<maxValue />
<default>1000</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>sample.mv</key>
<name>Maximum validation predictors</name>
<description>Maximum number of validation predictors (default = 1000) (no limit = -1).</description>
<minValue />
<maxValue />
<default>1000</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>sample.vtr</key>
<name>Training and validation sample ratio</name>
<description>Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
<minValue />
<maxValue />
<default>0.5</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Choice">ParameterSelection</parameter_type>
<key>classifier</key>
<name>Classifier to use for the training</name>
<description>Choice of the classifier to use for the training.</description>
<options>
<choices>
<choice>rf</choice>
</choices>
</options>
<default>0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.rf.max</key>
<name>Maximum depth of the tree</name>
<description>The depth of the tree. A low value will likely underfit and conversely a high value will likely overfit. The optimal value can be obtained using cross validation or other suitable methods.</description>
<minValue />
<maxValue />
<default>5</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.rf.min</key>
<name>Minimum number of samples in each node</name>
<description>If the number of samples in a node is smaller than this parameter, then the node will not be split. A reasonable value is a small percentage of the total data e.g. 1 percent.</description>
<minValue />
<maxValue />
<default>10</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.rf.ra</key>
<name>Termination Criteria for regression tree</name>
<description>If all absolute differences between an estimated value in a node and the values of the train samples in this node are smaller than this regression accuracy parameter, then the node will not be split.</description>
<minValue />
<maxValue />
<default>0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.rf.cat</key>
<name>Cluster possible values of a categorical variable into K &lt;= cat clusters to find a suboptimal split</name>
<description>Cluster possible values of a categorical variable into K &lt;= cat clusters to find a suboptimal split.</description>
<minValue />
<maxValue />
<default>10</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.rf.var</key>
<name>Size of the randomly selected subset of features at each tree node</name>
<description>The size of the subset of features, randomly selected at each tree node, that are used to find the best split(s). If you set it to 0, then the size will be set to the square root of the total number of features.</description>
<minValue />
<maxValue />
<default>0</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>classifier.rf.nbtrees</key>
<name>Maximum number of trees in the forest</name>
<description>The maximum number of trees in the forest. Typically, the more trees you have, the better the accuracy. However, the improvement in accuracy generally diminishes and reaches an asymptote for a certain number of trees. Also to keep in mind, increasing the number of trees increases the prediction time linearly.</description>
<minValue />
<maxValue />
<default>100</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Float">ParameterNumber</parameter_type>
<key>classifier.rf.acc</key>
<name>Sufficient accuracy (OOB error)</name>
<description>Sufficient accuracy (OOB error).</description>
<minValue />
<maxValue />
<default>0.01</default>
<optional>False</optional>
</parameter>
<parameter>
<parameter_type source_parameter_type="ParameterType_Int">ParameterNumber</parameter_type>
<key>rand</key>
<name>set user defined seed</name>
<description>Set specific seed. with integer value.</description>
<minValue />
<maxValue />
<default>0</default>
<optional>True</optional>
</parameter>
</root>