/************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgstriangle.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/ class QgsTriangle : QgsPolygonV2 { %Docstring Triangle geometry type. .. versionadded:: 3.0 %End %TypeHeaderCode #include "qgstriangle.h" %End public: QgsTriangle(); QgsTriangle( const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &p3 ); %Docstring Construct a QgsTriangle from three QgsPointV2. An empty triangle is returned if there are identical points or if the points are collinear. \param p1 first point \param p2 second point \param p3 third point %End explicit QgsTriangle( const QgsPointXY &p1, const QgsPointXY &p2, const QgsPointXY &p3 ); %Docstring Construct a QgsTriangle from three QgsPoint. An empty triangle is returned if there are identical points or if the points are collinear. \param p1 first point \param p2 second point \param p3 third point %End explicit QgsTriangle( const QPointF p1, const QPointF p2, const QPointF p3 ); %Docstring Construct a QgsTriangle from three QPointF. An empty triangle is returned if there are identical points or if the points are collinear. \param p1 first point \param p2 second point \param p3 third point %End bool operator==( const QgsTriangle &other ) const; bool operator!=( const QgsTriangle &other ) const; %Docstring :rtype: bool %End virtual QString geometryType() const; virtual QgsTriangle *clone() const /Factory/; virtual void clear(); virtual bool fromWkb( QgsConstWkbPtr &wkbPtr ); virtual bool fromWkt( const QString &wkt ); virtual QgsPolygonV2 *surfaceToPolygon() const /Factory/; virtual QgsCurvePolygon *toCurveType() const /Factory/; virtual void addInteriorRing( QgsCurve *ring /Transfer/ ); %Docstring Inherited method not used. You cannot add an interior ring into a triangle. %End virtual bool deleteVertex( QgsVertexId position ); %Docstring Inherited method not used. You cannot delete or insert a vertex directly. Returns always false. :rtype: bool %End virtual bool insertVertex( QgsVertexId position, const QgsPoint &vertex ); %Docstring Inherited method not used. You cannot delete or insert a vertex directly. Returns always false. :rtype: bool %End virtual bool moveVertex( QgsVertexId vId, const QgsPoint &newPos ); virtual void setExteriorRing( QgsCurve *ring /Transfer/ ); virtual QgsCurve *boundary() const /Factory/; QgsPoint vertexAt( int atVertex ) const; %Docstring Returns coordinates of a vertex. \param atVertex index of the vertex :return: Coordinates of the vertex or QgsPoint(0,0) on error (``atVertex`` < 0 or > 3). :rtype: QgsPoint %End QVector lengths() const; %Docstring Returns the three lengths of the triangle. :return: Lengths of triangle ABC where [AB] is at 0, [BC] is at 1, [CA] is at 2. An empty list is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.lengths() # [5.0, 5.0, 7.0710678118654755] QgsTriangle().lengths() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).lengths() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).lengths() # [] \endcode :rtype: list of float %End QVector angles() const; %Docstring Returns the three angles of the triangle. :return: Angles in radians of triangle ABC where angle BAC is at 0, angle ABC is at 1, angle BCA is at 2. An empty list is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) [math.degrees(i) for i in tri.angles()] # [45.0, 90.0, 45.0] QgsTriangle().angles() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).angles() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).angles() # [] \endcode :rtype: list of float %End bool isIsocele( double lengthTolerance = 0.0001 ) const; %Docstring Is the triangle isocele (two sides with the same length)? \param lengthTolerance The tolerance to use :return: True or False. Always false for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.lengths() # [5.0, 5.0, 7.0710678118654755] tri.isIsocele() # True # length of [AB] == length of [BC] QgsTriangle().isIsocele() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).isIsocele() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).isIsocele() # False \endcode :rtype: bool %End bool isEquilateral( double lengthTolerance = 0.0001 ) const; %Docstring Is the triangle equilateral (three sides with the same length)? \param lengthTolerance The tolerance to use :return: True or False. Always false for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 10, 10 ), QgsPoint( 16, 10 ), QgsPoint( 13, 15.1962 ) ) tri.lengths() # [6.0, 6.0000412031918575, 6.0000412031918575] tri.isEquilateral() # True # All lengths are close to 6.0 QgsTriangle().isEquilateral() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).isEquilateral() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).isEquilateral() # False \endcode :rtype: bool %End bool isRight( double angleTolerance = 0.0001 ) const; %Docstring Is the triangle right-angled? \param angleTolerance The tolerance to use :return: True or False. Always false for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) [math.degrees(i) for i in tri.angles()] # [45.0, 90.0, 45.0] tri.isRight() # True # angle of ABC == 90 QgsTriangle().isRight() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).isRight() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).isRight() # False \endcode :rtype: bool %End bool isScalene( double lengthTolerance = 0.0001 ) const; %Docstring Is the triangle scalene (all sides have differen lengths)? \param lengthTolerance The tolerance to use :return: True or False. Always false for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 7.2825, 4.2368 ), QgsPoint( 13.0058, 3.3218 ), QgsPoint( 9.2145, 6.5242 ) ) tri.lengths() # [5.795980321740233, 4.962793714229921, 2.994131386562721] tri.isScalene() # True # All lengths are different QgsTriangle().isScalene() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).isScalene() # False QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).isScalene() # False \endcode :rtype: bool %End QVector altitudes() const; %Docstring An altitude is a segment (defined by a QgsLineString) from a vertex to the opposite side (or, if necessary, to the extension of the opposite side). :return: Three altitudes from this triangle. An empty list is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) [alt.asWkt() for alt in tri.altitudes()] # ['LineString (0 0, 0 5)', 'LineString (0 5, 2.5 2.5)', 'LineString (5 5, 0 5)'] QgsTriangle().altitudes() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).altitudes() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).altitudes() # [] \endcode :rtype: list of QgsLineString %End QVector medians() const; %Docstring A median is a segment (defined by a QgsLineString) from a vertex to the midpoint of the opposite side. :return: Three medians from this triangle. An empty list is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) [med.asWkt() for med in tri.medians()] # ['LineString (0 0, 2.5 5)', 'LineString (0 5, 2.5 2.5)', 'LineString (5 5, 0 2.5)'] QgsTriangle().medians() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).medians() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).medians() # [] \endcode :rtype: list of QgsLineString %End QVector bisectors( double lengthTolerance = 0.0001 ) const; %Docstring The segment (defined by a QgsLineString) returned bisect the angle of a vertex to the opposite side. \param lengthTolerance The tolerance to use. :return: Three angle bisector from this triangle. An empty list is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) [bis.asWkt() for bis in tri.bisectors()] # ['LineString (0 0, 2.07106781186547462 5)', 'LineString (0 5, 2.5 2.5)', 'LineString (5 5, 0 2.92893218813452538)'] QgsTriangle().bisectors() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).bisectors() # [] QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).bisectors() # [] \endcode :rtype: list of QgsLineString %End QgsTriangle medial() const; %Docstring Medial (or midpoint) triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle's sides. :return: The medial from this triangle. An empty triangle is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.medial().asWkt() # 'Triangle ((0 2.5, 2.5 5, 2.5 2.5, 0 2.5))' QgsTriangle().medial().asWkt() # 'Triangle ( )' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).medial().asWkt() # 'Triangle ( )' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).medial().asWkt() # 'Triangle ( )' \endcode :rtype: QgsTriangle %End QgsPoint orthocenter( double lengthTolerance = 0.0001 ) const; %Docstring An orthocenter is the point of intersection of the altitudes of a triangle. \param lengthTolerance The tolerance to use :return: The orthocenter of the triangle. An empty point is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.orthocenter().asWkt() # 'Point (0 5)' QgsTriangle().orthocenter().asWkt() # 'Point (0 0)' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).orthocenter().asWkt() # 'Point (0 0)' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).orthocenter().asWkt() # 'Point (0 0)' \endcode :rtype: QgsPoint %End QgsPoint circumscribedCenter() const; %Docstring Center of the circumscribed circle of the triangle. :return: The center of the circumscribed circle of the triangle. An empty point is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.circumscribedCenter().asWkt() # 'Point (2.5 2.5)' QgsTriangle().circumscribedCenter().asWkt() # 'Point (0 0)' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).circumscribedCenter().asWkt() # 'Point (0 0)' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).circumscribedCenter().asWkt() # 'Point (0 0)' \endcode :rtype: QgsPoint %End double circumscribedRadius() const; %Docstring Radius of the circumscribed circle of the triangle. :return: The radius of the circumscribed circle of the triangle. 0.0 is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.circumscribedRadius() # 3.5355339059327378 QgsTriangle().circumscribedRadius() # 0.0 QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).circumscribedRadius() # 0.0 QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).circumscribedRadius() # 0.0 \endcode :rtype: float %End QgsCircle circumscribedCircle() const; %Docstring Circumscribed circle of the triangle. :return: The circumbscribed of the triangle with a QgsCircle. An empty circle is returned for empty or invalid triangle. Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.circumscribedCircle() # QgsCircle(Point (2.5 2.5), 3.5355339059327378, 0) QgsTriangle().circumscribedCircle() # QgsCircle() QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).circumscribedCircle() # QgsCircle() QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).circumscribedCircle() # QgsCircle() \endcode :rtype: QgsCircle %End QgsPoint inscribedCenter() const; %Docstring Center of the inscribed circle of the triangle. :return: The center of the inscribed circle of the triangle. An empty point is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.inscribedCenter().asWkt() # 'Point (1.46446609406726225 3.53553390593273775)' QgsTriangle().inscribedCenter().asWkt() # 'Point (0 0)' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).inscribedCenter().asWkt() # 'Point (0 0)' QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).inscribedCenter().asWkt() # 'Point (0 0)' \endcode :rtype: QgsPoint %End double inscribedRadius() const; %Docstring Radius of the inscribed circle of the triangle. :return: The radius of the inscribed circle of the triangle. 0.0 is returned for empty or invalid triangle. * Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.inscribedRadius() # 1.4644660940672622 QgsTriangle().inscribedRadius() # 0.0 QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).inscribedRadius() # 0.0 QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).inscribedRadius() # 0.0 \endcode :rtype: float %End QgsCircle inscribedCircle() const; %Docstring Inscribed circle of the triangle. :return: The inscribed of the triangle with a QgsCircle. An empty circle is returned for empty or invalid triangle. Example: \code{.py} tri = QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 5 ), QgsPoint( 5, 5 ) ) tri.inscribedCircle() # QgsCircle(Point (1.46446609406726225 3.53553390593273775), 1.4644660940672622, 0) QgsTriangle().inscribedCircle() # QgsCircle() QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 5, 5 ), QgsPoint( 10, 10 ) ).inscribedCircle() # QgsCircle() QgsTriangle( QgsPoint( 0, 0 ), QgsPoint( 0, 0 ), QgsPoint( 10, 10 ) ).inscribedCircle() # QgsCircle() \endcode :rtype: QgsCircle %End }; /************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgstriangle.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/