# -*- coding: utf-8 -*- """ *************************************************************************** BasicStatisticsNumbers.py --------------------- Date : September 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'September 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import math from PyQt4.QtCore import * from qgis.core import * from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.parameters import ParameterVector from processing.core.parameters import ParameterTableField from processing.core.outputs import OutputHTML from processing.core.outputs import OutputNumber from processing.tools import dataobjects, vector class BasicStatisticsNumbers(GeoAlgorithm): INPUT_LAYER = 'INPUT_LAYER' FIELD_NAME = 'FIELD_NAME' OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE' CV = 'CV' MIN = 'MIN' MAX = 'MAX' SUM = 'SUM' MEAN = 'MEAN' COUNT = 'COUNT' STD_DEV = 'STD_DEV' RANGE = 'RANGE' MEDIAN = 'MEDIAN' UNIQUE = 'UNIQUE' def defineCharacteristics(self): self.name = 'Basic statistics for numeric fields' self.group = 'Vector table tools' self.addParameter(ParameterVector(self.INPUT_LAYER, 'Input vector layer', ParameterVector.VECTOR_TYPE_ANY, False)) self.addParameter(ParameterTableField(self.FIELD_NAME, 'Field to calculate statistics on', self.INPUT_LAYER, ParameterTableField.DATA_TYPE_NUMBER)) self.addOutput(OutputHTML(self.OUTPUT_HTML_FILE, 'Statistics for numeric field')) self.addOutput(OutputNumber(self.CV, 'Coefficient of Variation')) self.addOutput(OutputNumber(self.MIN, 'Minimum value')) self.addOutput(OutputNumber(self.MAX, 'Maximum value')) self.addOutput(OutputNumber(self.SUM, 'Sum')) self.addOutput(OutputNumber(self.MEAN, 'Mean value')) self.addOutput(OutputNumber(self.COUNT, 'Count')) self.addOutput(OutputNumber(self.RANGE, 'Range')) self.addOutput(OutputNumber(self.MEDIAN, 'Median')) self.addOutput(OutputNumber(self.UNIQUE, 'Number of unique values')) self.addOutput(OutputNumber(self.STD_DEV, 'Standard deviation')) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri( self.getParameterValue(self.INPUT_LAYER)) fieldName = self.getParameterValue(self.FIELD_NAME) outputFile = self.getOutputValue(self.OUTPUT_HTML_FILE) index = layer.fieldNameIndex(fieldName) cvValue = 0 minValue = 0 maxValue = 0 sumValue = 0 meanValue = 0 medianValue = 0 stdDevValue = 0 isFirst = True values = [] features = vector.features(layer) count = len(features) total = 100.0 / float(count) current = 0 for ft in features: value = float(ft.attributes()[index]) if isFirst: minValue = value maxValue = value isFirst = False else: if value < minValue: minValue = value if value > maxValue: maxValue = value values.append(value) sumValue += value current += 1 progress.setPercentage(int(current * total)) # Calculate additional values rValue = maxValue - minValue uniqueValue = vector.getUniqueValuesCount(layer, index) if count > 0: meanValue = sumValue / count if meanValue != 0.00: for v in values: stdDevValue += (v - meanValue) * (v - meanValue) stdDevValue = math.sqrt(stdDevValue / count) cvValue = stdDevValue / meanValue if count > 1: tmp = values tmp.sort() # Calculate median if count % 2 == 0: medianValue = 0.5 * (tmp[(count - 1) / 2] + tmp[count / 2]) else: medianValue = tmp[(count + 1) / 2 - 1] data = [] data.append('Count: ' + unicode(count)) data.append('Unique values: ' + unicode(uniqueValue)) data.append('Minimum value: ' + unicode(minValue)) data.append('Maximum value: ' + unicode(maxValue)) data.append('Range: ' + unicode(rValue)) data.append('Sum: ' + unicode(sumValue)) data.append('Mean value: ' + unicode(meanValue)) data.append('Median value: ' + unicode(medianValue)) data.append('Standard deviation: ' + unicode(stdDevValue)) data.append('Coefficient of Variation: ' + unicode(cvValue)) self.createHTML(outputFile, data) self.setOutputValue(self.COUNT, count) self.setOutputValue(self.UNIQUE, uniqueValue) self.setOutputValue(self.MIN, minValue) self.setOutputValue(self.MAX, maxValue) self.setOutputValue(self.RANGE, rValue) self.setOutputValue(self.SUM, sumValue) self.setOutputValue(self.MEAN, meanValue) self.setOutputValue(self.MEDIAN, medianValue) self.setOutputValue(self.STD_DEV, stdDevValue) self.setOutputValue(self.CV, cvValue) def createHTML(self, outputFile, algData): f = open(outputFile, 'w') for s in algData: f.write('<p>' + str(s) + '</p>') f.close()