/************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgsgeometry.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/ typedef QVector QgsPolyline; typedef QVector> QgsPolygon; typedef QVector QgsMultiPoint; typedef QVector> QgsMultiPolyline; typedef QVector>> QgsMultiPolygon; class QgsGeometry { %Docstring A geometry is the spatial representation of a feature. Since QGIS 2.10, QgsGeometry acts as a generic container for geometry objects. QgsGeometry is implicitly shared, so making copies of geometries is inexpensive. The geometry container class can also be stored inside a QVariant object. The actual geometry representation is stored as a QgsAbstractGeometry within the container, and can be accessed via the geometry() method or set using the setGeometry() method. %End %TypeHeaderCode #include "qgsgeometry.h" %End public: QgsGeometry(); %Docstring Constructor %End QgsGeometry( const QgsGeometry & ); %Docstring Copy constructor will prompt a deep copy of the object %End explicit QgsGeometry( QgsAbstractGeometry *geom /Transfer/ ); %Docstring Creates a geometry from an abstract geometry object. Ownership of geom is transferred. .. versionadded:: 2.10 %End ~QgsGeometry(); QgsAbstractGeometry *geometry() const; %Docstring Returns the underlying geometry store. .. versionadded:: 2.10 .. seealso:: setGeometry :rtype: QgsAbstractGeometry %End void setGeometry( QgsAbstractGeometry *geometry /Transfer/ ); %Docstring Sets the underlying geometry store. Ownership of geometry is transferred. .. versionadded:: 2.10 .. seealso:: geometry %End bool isNull() const; %Docstring Returns true if the geometry is null (ie, contains no underlying geometry accessible via geometry() ). .. seealso:: geometry .. versionadded:: 2.10 .. seealso:: isEmpty() :rtype: bool %End static QgsGeometry fromWkt( const QString &wkt ); %Docstring Creates a new geometry from a WKT string :rtype: QgsGeometry %End static QgsGeometry fromPoint( const QgsPoint &point ); %Docstring Creates a new geometry from a QgsPoint object :rtype: QgsGeometry %End static QgsGeometry fromMultiPoint( const QgsMultiPoint &multipoint ); %Docstring Creates a new geometry from a QgsMultiPoint object :rtype: QgsGeometry %End static QgsGeometry fromPolyline( const QgsPolyline &polyline ); %Docstring Creates a new geometry from a QgsPolyline object :rtype: QgsGeometry %End static QgsGeometry fromMultiPolyline( const QgsMultiPolyline &multiline ); %Docstring Creates a new geometry from a QgsMultiPolyline object :rtype: QgsGeometry %End static QgsGeometry fromPolygon( const QgsPolygon &polygon ); %Docstring Creates a new geometry from a QgsPolygon :rtype: QgsGeometry %End static QgsGeometry fromMultiPolygon( const QgsMultiPolygon &multipoly ); %Docstring Creates a new geometry from a QgsMultiPolygon :rtype: QgsGeometry %End static QgsGeometry fromRect( const QgsRectangle &rect ); %Docstring Creates a new geometry from a QgsRectangle :rtype: QgsGeometry %End static QgsGeometry collectGeometry( const QList< QgsGeometry > &geometries ); %Docstring Creates a new multipart geometry from a list of QgsGeometry objects :rtype: QgsGeometry %End void fromWkb( const QByteArray &wkb ); %Docstring Set the geometry, feeding in the buffer containing OGC Well-Known Binary .. versionadded:: 3.0 %End QgsWkbTypes::Type wkbType() const; %Docstring Returns type of the geometry as a WKB type (point / linestring / polygon etc.) .. seealso:: type :rtype: QgsWkbTypes.Type %End QgsWkbTypes::GeometryType type() const; %Docstring Returns type of the geometry as a QgsWkbTypes.GeometryType .. seealso:: wkbType :rtype: QgsWkbTypes.GeometryType %End bool isEmpty() const; %Docstring Returns true if the geometry is empty (eg a linestring with no vertices, or a collection with no geometries). A null geometry will always return true for isEmpty(). .. seealso:: isNull() :rtype: bool %End bool isMultipart() const; %Docstring Returns true if WKB of the geometry is of WKBMulti* type :rtype: bool %End bool isGeosEqual( const QgsGeometry & ) const; %Docstring Compares the geometry with another geometry using GEOS .. versionadded:: 1.5 :rtype: bool %End bool isGeosValid() const; %Docstring Checks validity of the geometry using GEOS .. versionadded:: 1.5 :rtype: bool %End double area() const; %Docstring Returns the area of the geometry using GEOS .. versionadded:: 1.5 :rtype: float %End double length() const; %Docstring Returns the length of geometry using GEOS .. versionadded:: 1.5 :rtype: float %End double distance( const QgsGeometry &geom ) const; %Docstring Returns the minimum distance between this geometry and another geometry, using GEOS. Will return a negative value if a geometry is missing. \param geom geometry to find minimum distance to :rtype: float %End QgsPoint closestVertex( const QgsPoint &point, int &atVertex /Out/, int &beforeVertex /Out/, int &afterVertex /Out/, double &sqrDist /Out/ ) const; %Docstring :rtype: QgsPoint %End double distanceToVertex( int vertex ) const; %Docstring Returns the distance along this geometry from its first vertex to the specified vertex. \param vertex vertex index to calculate distance to :return: distance to vertex (following geometry), or -1 for invalid vertex numbers .. versionadded:: 2.16 :rtype: float %End double angleAtVertex( int vertex ) const; %Docstring Returns the bisector angle for this geometry at the specified vertex. \param vertex vertex index to calculate bisector angle at :return: bisector angle, in radians clockwise from north .. versionadded:: 3.0 .. seealso:: interpolateAngle() :rtype: float %End void adjacentVertices( int atVertex, int &beforeVertex /Out/, int &afterVertex /Out/ ) const; %Docstring Returns the indexes of the vertices before and after the given vertex index. This function takes into account the following factors: 1. If the given vertex index is at the end of a linestring, the adjacent index will be -1 (for "no adjacent vertex") 2. If the given vertex index is at the end of a linear ring (such as in a polygon), the adjacent index will take into account the first vertex is equal to the last vertex (and will skip equal vertex positions). %End bool insertVertex( double x, double y, int beforeVertex ); %Docstring Insert a new vertex before the given vertex index, ring and item (first number is index 0) If the requested vertex number (beforeVertex.back()) is greater than the last actual vertex on the requested ring and item, it is assumed that the vertex is to be appended instead of inserted. Returns false if atVertex does not correspond to a valid vertex on this geometry (including if this geometry is a Point). It is up to the caller to distinguish between these error conditions. (Or maybe we add another method to this object to help make the distinction?) :rtype: bool %End bool insertVertex( const QgsPointV2 &point, int beforeVertex ); %Docstring Insert a new vertex before the given vertex index, ring and item (first number is index 0) If the requested vertex number (beforeVertex.back()) is greater than the last actual vertex on the requested ring and item, it is assumed that the vertex is to be appended instead of inserted. Returns false if atVertex does not correspond to a valid vertex on this geometry (including if this geometry is a Point). It is up to the caller to distinguish between these error conditions. (Or maybe we add another method to this object to help make the distinction?) :rtype: bool %End bool moveVertex( double x, double y, int atVertex ); %Docstring Moves the vertex at the given position number and item (first number is index 0) to the given coordinates. Returns false if atVertex does not correspond to a valid vertex on this geometry :rtype: bool %End bool moveVertex( const QgsPointV2 &p, int atVertex ); %Docstring Moves the vertex at the given position number and item (first number is index 0) to the given coordinates. Returns false if atVertex does not correspond to a valid vertex on this geometry :rtype: bool %End bool deleteVertex( int atVertex ); %Docstring Deletes the vertex at the given position number and item (first number is index 0) Returns false if atVertex does not correspond to a valid vertex on this geometry (including if this geometry is a Point), or if the number of remaining vertices in the linestring would be less than two. It is up to the caller to distinguish between these error conditions. (Or maybe we add another method to this object to help make the distinction?) :rtype: bool %End QgsPoint vertexAt( int atVertex ) const; %Docstring Returns coordinates of a vertex. \param atVertex index of the vertex :return: Coordinates of the vertex or QgsPoint(0,0) on error :rtype: QgsPoint %End double sqrDistToVertexAt( QgsPoint &point /In/, int atVertex ) const; %Docstring Returns the squared cartesian distance between the given point to the given vertex index (vertex at the given position number, ring and item (first number is index 0)) :rtype: float %End QgsGeometry nearestPoint( const QgsGeometry &other ) const; %Docstring Returns the nearest point on this geometry to another geometry. .. versionadded:: 2.14 .. seealso:: shortestLine() :rtype: QgsGeometry %End QgsGeometry shortestLine( const QgsGeometry &other ) const; %Docstring Returns the shortest line joining this geometry to another geometry. .. versionadded:: 2.14 .. seealso:: nearestPoint() :rtype: QgsGeometry %End double closestVertexWithContext( const QgsPoint &point, int &atVertex /Out/ ) const; %Docstring Searches for the closest vertex in this geometry to the given point. \param point Specifiest the point for search \param atVertex Receives index of the closest vertex :return: The squared cartesian distance is also returned in sqrDist, negative number on error :rtype: float %End double closestSegmentWithContext( const QgsPoint &point, QgsPoint &minDistPoint /Out/, int &afterVertex /Out/ ) const; %Docstring Searches for the closest segment of geometry to the given point \param point Specifies the point for search \param minDistPoint Receives the nearest point on the segment \param afterVertex Receives index of the vertex after the closest segment. The vertex before the closest segment is always afterVertex - 1 \param leftOf Out: Returns if the point lies on the left of right side of the segment ( < 0 means left, > 0 means right ) \param epsilon epsilon for segment snapping :return: The squared cartesian distance is also returned in sqrDist, negative number on error :rtype: float %End int addRing( const QList &ring ); %Docstring Adds a new ring to this geometry. This makes only sense for polygon and multipolygons. :return: 0 in case of success (ring added), 1 problem with geometry type, 2 ring not closed, 3 ring is not valid geometry, 4 ring not disjoint with existing rings, 5 no polygon found which contained the ring* :rtype: int %End int addRing( QgsCurve *ring /Transfer/ ); %Docstring Adds a new ring to this geometry. This makes only sense for polygon and multipolygons. :return: 0 in case of success (ring added), 1 problem with geometry type, 2 ring not closed, 3 ring is not valid geometry, 4 ring not disjoint with existing rings, 5 no polygon found which contained the ring* :rtype: int %End int addPart( const QList &points, QgsWkbTypes::GeometryType geomType = QgsWkbTypes::UnknownGeometry ) /PyName=addPoints/; %Docstring Adds a new part to a the geometry. \param points points describing part to add \param geomType default geometry type to create if no existing geometry :return: 0 in case of success, 1 if not a multipolygon, 2 if ring is not a valid geometry, 3 if new polygon ring not disjoint with existing polygons of the feature :rtype: int %End int addPart( const QgsPointSequence &points, QgsWkbTypes::GeometryType geomType = QgsWkbTypes::UnknownGeometry ) /PyName=addPointsV2/; %Docstring Adds a new part to a the geometry. \param points points describing part to add \param geomType default geometry type to create if no existing geometry :return: 0 in case of success, 1 if not a multipolygon, 2 if ring is not a valid geometry, 3 if new polygon ring not disjoint with existing polygons of the feature :rtype: int %End int addPart( QgsAbstractGeometry *part /Transfer/, QgsWkbTypes::GeometryType geomType = QgsWkbTypes::UnknownGeometry ); %Docstring Adds a new part to this geometry. \param part part to add (ownership is transferred) \param geomType default geometry type to create if no existing geometry :return: 0 in case of success, 1 if not a multipolygon, 2 if ring is not a valid geometry, 3 if new polygon ring not disjoint with existing polygons of the feature :rtype: int %End int addPart( const QgsGeometry &newPart ) /PyName=addPartGeometry/; %Docstring Adds a new island polygon to a multipolygon feature :return: 0 in case of success, 1 if not a multipolygon, 2 if ring is not a valid geometry, 3 if new polygon ring not disjoint with existing polygons of the feature .. note:: available in Python bindings as addPartGeometry .. versionadded:: 2.2 :rtype: int %End QgsGeometry removeInteriorRings( double minimumAllowedArea = -1 ) const; %Docstring Removes the interior rings from a (multi)polygon geometry. If the minimumAllowedArea parameter is specified then only rings smaller than this minimum area will be removed. .. versionadded:: 3.0 :rtype: QgsGeometry %End int translate( double dx, double dy ); %Docstring Translate this geometry by dx, dy :return: 0 in case of success* :rtype: int %End int transform( const QgsCoordinateTransform &ct ); %Docstring Transform this geometry as described by CoordinateTransform ct :return: 0 in case of success* :rtype: int %End int transform( const QTransform &ct ); %Docstring Transform this geometry as described by QTransform ct .. versionadded:: 2.8 :return: 0 in case of success* :rtype: int %End int rotate( double rotation, const QgsPoint ¢er ); %Docstring Rotate this geometry around the Z axis .. versionadded:: 2.8 \param rotation clockwise rotation in degrees \param center rotation center :return: 0 in case of success* :rtype: int %End int splitGeometry( const QList &splitLine, QList &newGeometries /Out/, bool topological, QList &topologyTestPoints /Out/ ); %Docstring :rtype: int %End int reshapeGeometry( const QList &reshapeWithLine ); %Docstring Replaces a part of this geometry with another line :return: 0 in case of success .. versionadded:: 1.3 :rtype: int %End int makeDifference( const QgsGeometry *other ); %Docstring Changes this geometry such that it does not intersect the other geometry \param other geometry that should not be intersect :return: 0 in case of success :rtype: int %End QgsGeometry makeDifference( const QgsGeometry &other ) const; %Docstring Returns the geometry formed by modifying this geometry such that it does not intersect the other geometry. \param other geometry that should not be intersect :return: difference geometry, or empty geometry if difference could not be calculated .. versionadded:: 3.0 :rtype: QgsGeometry %End QgsRectangle boundingBox() const; %Docstring Returns the bounding box of the geometry. .. seealso:: orientedMinimumBoundingBox() :rtype: QgsRectangle %End QgsGeometry orientedMinimumBoundingBox( double &area /Out/, double &angle /Out/, double &width /Out/, double &height /Out/ ) const; %Docstring Returns the oriented minimum bounding box for the geometry, which is the smallest (by area) rotated rectangle which fully encompasses the geometry. The area, angle (clockwise in degrees from North), width and height of the rotated bounding box will also be returned. .. versionadded:: 3.0 .. seealso:: boundingBox() :rtype: QgsGeometry %End QgsGeometry orthogonalize( double tolerance = 1.0E-8, int maxIterations = 1000, double angleThreshold = 15.0 ) const; %Docstring Attempts to orthogonalize a line or polygon geometry by shifting vertices to make the geometries angles either right angles or flat lines. This is an iterative algorithm which will loop until either the vertices are within a specified tolerance of right angles or a set number of maximum iterations is reached. The angle threshold parameter specifies how close to a right angle or straight line an angle must be before it is attempted to be straightened. .. versionadded:: 3.0 :rtype: QgsGeometry %End bool intersects( const QgsRectangle &r ) const; %Docstring Test for intersection with a rectangle (uses GEOS) :rtype: bool %End bool intersects( const QgsGeometry &geometry ) const; %Docstring Test for intersection with a geometry (uses GEOS) :rtype: bool %End bool contains( const QgsPoint *p ) const; %Docstring Test for containment of a point (uses GEOS) :rtype: bool %End bool contains( const QgsGeometry &geometry ) const; %Docstring Test for if geometry is contained in another (uses GEOS) .. versionadded:: 1.5 :rtype: bool %End bool disjoint( const QgsGeometry &geometry ) const; %Docstring Test for if geometry is disjoint of another (uses GEOS) .. versionadded:: 1.5 :rtype: bool %End bool equals( const QgsGeometry &geometry ) const; %Docstring Test for if geometry equals another (uses GEOS) .. versionadded:: 1.5 :rtype: bool %End bool touches( const QgsGeometry &geometry ) const; %Docstring Test for if geometry touch another (uses GEOS) .. versionadded:: 1.5 :rtype: bool %End bool overlaps( const QgsGeometry &geometry ) const; %Docstring Test for if geometry overlaps another (uses GEOS) .. versionadded:: 1.5 :rtype: bool %End bool within( const QgsGeometry &geometry ) const; %Docstring Test for if geometry is within another (uses GEOS) .. versionadded:: 1.5 :rtype: bool %End bool crosses( const QgsGeometry &geometry ) const; %Docstring Test for if geometry crosses another (uses GEOS) .. versionadded:: 1.5 :rtype: bool %End enum BufferSide { SideLeft, SideRight, }; enum EndCapStyle { CapRound, CapFlat, CapSquare, }; enum JoinStyle { JoinStyleRound, JoinStyleMitre, JoinStyleBevel, }; QgsGeometry buffer( double distance, int segments ) const; %Docstring Returns a buffer region around this geometry having the given width and with a specified number of segments used to approximate curves * :rtype: QgsGeometry %End QgsGeometry buffer( double distance, int segments, EndCapStyle endCapStyle, JoinStyle joinStyle, double mitreLimit ) const; %Docstring Returns a buffer region around the geometry, with additional style options. \param distance buffer distance \param segments for round joins, number of segments to approximate quarter-circle \param endCapStyle end cap style \param joinStyle join style for corners in geometry \param mitreLimit limit on the mitre ratio used for very sharp corners (JoinStyleMitre only) .. versionadded:: 2.4 :rtype: QgsGeometry %End QgsGeometry offsetCurve( double distance, int segments, JoinStyle joinStyle, double mitreLimit ) const; %Docstring Returns an offset line at a given distance and side from an input line. \param distance buffer distance \param segments for round joins, number of segments to approximate quarter-circle \param joinStyle join style for corners in geometry \param mitreLimit limit on the mitre ratio used for very sharp corners (JoinStyleMitre only) .. versionadded:: 2.4 :rtype: QgsGeometry %End QgsGeometry singleSidedBuffer( double distance, int segments, BufferSide side, JoinStyle joinStyle = JoinStyleRound, double mitreLimit = 2.0 ) const; %Docstring Returns a single sided buffer for a (multi)line geometry. The buffer is only applied to one side of the line. \param distance buffer distance \param segments for round joins, number of segments to approximate quarter-circle \param side side of geometry to buffer \param joinStyle join style for corners \param mitreLimit limit on the mitre ratio used for very sharp corners :return: buffered geometry, or an empty geometry if buffer could not be calculated .. versionadded:: 3.0 :rtype: QgsGeometry %End QgsGeometry extendLine( double startDistance, double endDistance ) const; %Docstring Extends a (multi)line geometry by extrapolating out the start or end of the line by a specified distance. Lines are extended using the bearing of the first or last segment in the line. .. versionadded:: 3.0 :rtype: QgsGeometry %End QgsGeometry simplify( double tolerance ) const; %Docstring Returns a simplified version of this geometry using a specified tolerance value :rtype: QgsGeometry %End QgsGeometry densifyByCount( int extraNodesPerSegment ) const; %Docstring Returns a copy of the geometry which has been densified by adding the specified number of extra nodes within each segment of the geometry. If the geometry has z or m values present then these will be linearly interpolated at the added nodes. Curved geometry types are automatically segmentized by this routine. .. versionadded:: 3.0 .. seealso:: densifyByDistance() :rtype: QgsGeometry %End QgsGeometry densifyByDistance( double distance ) const; %Docstring Densifies the geometry by adding regularly placed extra nodes inside each segment so that the maximum distance between any two nodes does not exceed the specified ``distance``. E.g. specifying a distance 3 would cause the segment [0 0] -> [10 0] to be converted to [0 0] -> [2.5 0] -> [5 0] -> [7.5 0] -> [10 0], since 3 extra nodes are required on the segment and spacing these at 2.5 increments allows them to be evenly spaced over the segment. If the geometry has z or m values present then these will be linearly interpolated at the added nodes. Curved geometry types are automatically segmentized by this routine. .. versionadded:: 3.0 .. seealso:: densifyByCount() :rtype: QgsGeometry %End QgsGeometry centroid() const; %Docstring Returns the center of mass of a geometry. .. note:: for line based geometries, the center point of the line is returned, and for point based geometries, the point itself is returned .. seealso:: pointOnSurface() .. seealso:: poleOfInaccessibility() :rtype: QgsGeometry %End QgsGeometry pointOnSurface() const; %Docstring Returns a point guaranteed to lie on the surface of a geometry. While the centroid() of a geometry may be located outside of the geometry itself (e.g., for concave shapes), the point on surface will always be inside the geometry. .. seealso:: centroid() .. seealso:: poleOfInaccessibility() :rtype: QgsGeometry %End QgsGeometry poleOfInaccessibility( double precision, double *distanceToBoundary /Out/ = 0 ) const; %Docstring Calculates the approximate pole of inaccessibility for a surface, which is the most distant internal point from the boundary of the surface. This function uses the 'polylabel' algorithm (Vladimir Agafonkin, 2016), which is an iterative approach guaranteed to find the true pole of inaccessibility within a specified tolerance. More precise tolerances require more iterations and will take longer to calculate. Optionally, the distance to the polygon boundary from the pole can be stored. .. seealso:: centroid() .. seealso:: pointOnSurface() .. versionadded:: 3.0 :rtype: QgsGeometry %End QgsGeometry convexHull() const; %Docstring Returns the smallest convex polygon that contains all the points in the geometry. :rtype: QgsGeometry %End QgsGeometry voronoiDiagram( const QgsGeometry &extent = QgsGeometry(), double tolerance = 0.0, bool edgesOnly = false ) const; %Docstring Creates a Voronoi diagram for the nodes contained within the geometry. Returns the Voronoi polygons for the nodes contained within the geometry. If ``extent`` is specified then it will be used as a clipping envelope for the diagram. If no extent is set then the clipping envelope will be automatically calculated. In either case the diagram will be clipped to the larger of the provided envelope OR the envelope surrounding all input nodes. The ``tolerance`` parameter specifies an optional snapping tolerance which can be used to improve the robustness of the diagram calculation. If ``edgesOnly`` is true than line string boundary geometries will be returned instead of polygons. An empty geometry will be returned if the diagram could not be calculated. .. versionadded:: 3.0 :rtype: QgsGeometry %End QgsGeometry delaunayTriangulation( double tolerance = 0.0, bool edgesOnly = false ) const; %Docstring Returns the Delaunay triangulation for the vertices of the geometry. The ``tolerance`` parameter specifies an optional snapping tolerance which can be used to improve the robustness of the triangulation. If ``edgesOnly`` is true than line string boundary geometries will be returned instead of polygons. An empty geometry will be returned if the diagram could not be calculated. .. versionadded:: 3.0 :rtype: QgsGeometry %End QgsGeometry interpolate( double distance ) const; %Docstring Return interpolated point on line at distance .. versionadded:: 1.9 .. seealso:: lineLocatePoint() :rtype: QgsGeometry %End double lineLocatePoint( const QgsGeometry &point ) const; %Docstring Returns a distance representing the location along this linestring of the closest point on this linestring geometry to the specified point. Ie, the returned value indicates how far along this linestring you need to traverse to get to the closest location where this linestring comes to the specified point. \param point point to seek proximity to :return: distance along line, or -1 on error .. note:: only valid for linestring geometries .. seealso:: interpolate() .. versionadded:: 3.0 :rtype: float %End double interpolateAngle( double distance ) const; %Docstring Returns the angle parallel to the linestring or polygon boundary at the specified distance along the geometry. Angles are in radians, clockwise from north. If the distance coincides precisely at a node then the average angle from the segment either side of the node is returned. \param distance distance along geometry .. versionadded:: 3.0 .. seealso:: angleAtVertex() :rtype: float %End QgsGeometry intersection( const QgsGeometry &geometry ) const; %Docstring Returns a geometry representing the points shared by this geometry and other. :rtype: QgsGeometry %End QgsGeometry combine( const QgsGeometry &geometry ) const; %Docstring Returns a geometry representing all the points in this geometry and other (a union geometry operation). .. note:: this operation is not called union since its a reserved word in C++. :rtype: QgsGeometry %End QgsGeometry mergeLines() const; %Docstring Merges any connected lines in a LineString/MultiLineString geometry and converts them to single line strings. :return: a LineString or MultiLineString geometry, with any connected lines joined. An empty geometry will be returned if the input geometry was not a MultiLineString geometry. .. versionadded:: 3.0 :rtype: QgsGeometry %End QgsGeometry difference( const QgsGeometry &geometry ) const; %Docstring Returns a geometry representing the points making up this geometry that do not make up other. :rtype: QgsGeometry %End QgsGeometry symDifference( const QgsGeometry &geometry ) const; %Docstring Returns a geometry representing the points making up this geometry that do not make up other. :rtype: QgsGeometry %End QgsGeometry extrude( double x, double y ); %Docstring Returns an extruded version of this geometry. :rtype: QgsGeometry %End QByteArray exportToWkb() const; %Docstring Export the geometry to WKB .. versionadded:: 3.0 :rtype: QByteArray %End QString exportToWkt( int precision = 17 ) const; %Docstring Exports the geometry to WKT .. note:: precision parameter added in QGIS 2.4 :return: true in case of success and false else :rtype: str %End QString exportToGeoJSON( int precision = 17 ) const; %Docstring Exports the geometry to GeoJSON :return: a QString representing the geometry as GeoJSON .. versionadded:: 1.8 .. note:: Available in Python bindings since QGIS 1.9 .. note:: precision parameter added in QGIS 2.4 :rtype: str %End QgsGeometry convertToType( QgsWkbTypes::GeometryType destType, bool destMultipart = false ) const /Factory/; %Docstring Try to convert the geometry to the requested type \param destType the geometry type to be converted to \param destMultipart determines if the output geometry will be multipart or not :return: the converted geometry or None if the conversion fails. .. versionadded:: 2.2 :rtype: QgsGeometry %End QgsPoint asPoint() const; %Docstring Return contents of the geometry as a point if wkbType is WKBPoint, otherwise returns [0,0] :rtype: QgsPoint %End QgsPolyline asPolyline() const; %Docstring Return contents of the geometry as a polyline if wkbType is WKBLineString, otherwise an empty list :rtype: QgsPolyline %End QgsPolygon asPolygon() const; %Docstring Return contents of the geometry as a polygon if wkbType is WKBPolygon, otherwise an empty list :rtype: QgsPolygon %End QgsMultiPoint asMultiPoint() const; %Docstring Return contents of the geometry as a multi point if wkbType is WKBMultiPoint, otherwise an empty list * :rtype: QgsMultiPoint %End QgsMultiPolyline asMultiPolyline() const; %Docstring Return contents of the geometry as a multi linestring if wkbType is WKBMultiLineString, otherwise an empty list * :rtype: QgsMultiPolyline %End QgsMultiPolygon asMultiPolygon() const; %Docstring Return contents of the geometry as a multi polygon if wkbType is WKBMultiPolygon, otherwise an empty list * :rtype: QgsMultiPolygon %End QList asGeometryCollection() const; %Docstring Return contents of the geometry as a list of geometries .. versionadded:: 1.1 :rtype: list of QgsGeometry %End QPointF asQPointF() const; %Docstring Return contents of the geometry as a QPointF if wkbType is WKBPoint, otherwise returns a null QPointF. .. versionadded:: 2.7 :rtype: QPointF %End QPolygonF asQPolygonF() const; %Docstring Return contents of the geometry as a QPolygonF. If geometry is a linestring, then the result will be an open QPolygonF. If the geometry is a polygon, then the result will be a closed QPolygonF of the geometry's exterior ring. .. versionadded:: 2.7 :rtype: QPolygonF %End bool deleteRing( int ringNum, int partNum = 0 ); %Docstring Delete a ring in polygon or multipolygon. Ring 0 is outer ring and can't be deleted. :return: true on success .. versionadded:: 1.2 :rtype: bool %End bool deletePart( int partNum ); %Docstring Delete part identified by the part number :return: true on success .. versionadded:: 1.2 :rtype: bool %End bool convertToMultiType(); %Docstring Converts single type geometry into multitype geometry e.g. a polygon into a multipolygon geometry with one polygon If it is already a multipart geometry, it will return true and not change the geometry. :return: true in case of success and false else :rtype: bool %End bool convertToSingleType(); %Docstring Converts multi type geometry into single type geometry e.g. a multipolygon into a polygon geometry. Only the first part of the multi geometry will be retained. If it is already a single part geometry, it will return true and not change the geometry. :return: true in case of success and false else :rtype: bool %End int avoidIntersections( const QList &avoidIntersectionsLayers ); %Docstring Modifies geometry to avoid intersections with the layers specified in project properties :return: 0 in case of success, 1 if geometry is not of polygon type, 2 if avoid intersection would change the geometry type, 3 other error during intersection removal \param avoidIntersectionsLayers list of layers to check for intersections \param ignoreFeatures possibility to give a list of features where intersections should be ignored (not available in Python bindings) .. versionadded:: 1.5 :rtype: int %End QgsGeometry makeValid(); %Docstring Attempts to make an invalid geometry valid without losing vertices. .. note:: Ported from PostGIS ST_MakeValid() and it should return equivalent results. Already-valid geometries are returned without further intervention. In case of full or partial dimensional collapses, the output geometry may be a collection of lower-to-equal dimension geometries or a geometry of lower dimension. Single polygons may become multi-geometries in case of self-intersections. It preserves Z values, but M values will be dropped. :return: new valid QgsGeometry or null geometry on error .. versionadded:: 3.0 :rtype: QgsGeometry %End class Error { %TypeHeaderCode #include "qgsgeometry.h" %End public: Error(); explicit Error( const QString &m ); Error( const QString &m, const QgsPoint &p ); QString what(); %Docstring :rtype: str %End QgsPoint where(); %Docstring :rtype: QgsPoint %End bool hasWhere(); %Docstring :rtype: bool %End }; void validateGeometry( QList &errors /Out/ ); %Docstring Validate geometry and produce a list of geometry errors .. versionadded:: 1.5 .. note:: Available in Python bindings since QGIS 1.6 * %End static QgsGeometry unaryUnion( const QList &geometries ); %Docstring Compute the unary union on a list of ``geometries``. May be faster than an iterative union on a set of geometries. The returned geometry will be fully noded, i.e. a node will be created at every common intersection of the input geometries. An empty geometry will be returned in the case of errors. :rtype: QgsGeometry %End static QgsGeometry polygonize( const QList< QgsGeometry> &geometries ); %Docstring Creates a GeometryCollection geometry containing possible polygons formed from the constituent linework of a set of ``geometries``. The input geometries must be fully noded (i.e. nodes exist at every common intersection of the geometries). The easiest way to ensure this is to first call unaryUnion() on the set of input geometries and then pass the result to polygonize(). An empty geometry will be returned in the case of errors. .. versionadded:: 3.0 :rtype: QgsGeometry %End void convertToStraightSegment(); %Docstring Converts the geometry to straight line segments, if it is a curved geometry type. .. versionadded:: 2.10 .. seealso:: requiresConversionToStraightSegments %End bool requiresConversionToStraightSegments() const; %Docstring Returns true if the geometry is a curved geometry type which requires conversion to display as straight line segments. .. versionadded:: 2.10 .. seealso:: convertToStraightSegment :rtype: bool %End void mapToPixel( const QgsMapToPixel &mtp ); %Docstring Transforms the geometry from map units to pixels in place. \param mtp map to pixel transform .. versionadded:: 2.10 %End void draw( QPainter &p ) const; %Docstring Draws the geometry onto a QPainter \param p destination QPainter .. versionadded:: 2.10 %End bool vertexIdFromVertexNr( int nr, QgsVertexId &id /Out/ ) const; %Docstring Calculates the vertex ID from a vertex number \param nr vertex number \param id reference to QgsVertexId for storing result :return: true if vertex was found .. versionadded:: 2.10 .. seealso:: vertexNrFromVertexId :rtype: bool %End int vertexNrFromVertexId( QgsVertexId i ) const; %Docstring Returns the vertex number corresponding to a vertex idd \param i vertex id :return: vertex number .. versionadded:: 2.10 .. seealso:: vertexIdFromVertexNr :rtype: int %End static QgsGeometry fromQPointF( QPointF point ); %Docstring Construct geometry from a QPointF \param point source QPointF .. versionadded:: 2.7 :rtype: QgsGeometry %End static QgsGeometry fromQPolygonF( const QPolygonF &polygon ); %Docstring Construct geometry from a QPolygonF. If the polygon is closed than the resultant geometry will be a polygon, if it is open than the geometry will be a polyline. \param polygon source QPolygonF .. versionadded:: 2.7 :rtype: QgsGeometry %End static QgsPolyline createPolylineFromQPolygonF( const QPolygonF &polygon ) /Factory/; %Docstring Creates a QgsPolyline from a QPolygonF. \param polygon source polygon :return: QgsPolyline .. seealso:: createPolygonFromQPolygonF :rtype: QgsPolyline %End static QgsPolygon createPolygonFromQPolygonF( const QPolygonF &polygon ) /Factory/; %Docstring Creates a QgsPolygon from a QPolygonF. \param polygon source polygon :return: QgsPolygon .. seealso:: createPolylineFromQPolygonF :rtype: QgsPolygon %End static bool compare( PyObject *obj1, PyObject *obj2, double epsilon = 4 * DBL_EPSILON ); %Docstring Compares two geometry objects for equality within a specified tolerance. The objects can be of type QgsPolyline, QgsPolygon or QgsMultiPolygon. The 2 types should match. \param p1 first geometry object \param p2 second geometry object \param epsilon maximum difference for coordinates between the objects :return: true if objects are - polylines and have the same number of points and all points are equal within the specified tolerance - polygons and have the same number of points and all points are equal within the specified tolerance - multipolygons and have the same number of polygons, the polygons have the same number of rings, and each ring has the same number of points and all points are equal within the specified tolerance .. versionadded:: 2.9 :rtype: bool %End %MethodCode { sipRes = false; int state0; int state1; int sipIsErr = 0; if ( PyList_Check( a0 ) && PyList_Check( a1 ) && PyList_GET_SIZE( a0 ) && PyList_GET_SIZE( a1 ) ) { PyObject *o0 = PyList_GetItem( a0, 0 ); PyObject *o1 = PyList_GetItem( a1, 0 ); if ( o0 && o1 ) { // compare polyline - polyline if ( sipCanConvertToType( o0, sipType_QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( o1, sipType_QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( a0, sipType_QVector_0100QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( a1, sipType_QVector_0100QgsPoint, SIP_NOT_NONE ) ) { QgsPolyline *p0; QgsPolyline *p1; p0 = reinterpret_cast( sipConvertToType( a0, sipType_QVector_0100QgsPoint, 0, SIP_NOT_NONE, &state0, &sipIsErr ) ); p1 = reinterpret_cast( sipConvertToType( a1, sipType_QVector_0100QgsPoint, 0, SIP_NOT_NONE, &state1, &sipIsErr ) ); if ( sipIsErr ) { sipReleaseType( p0, sipType_QVector_0100QgsPoint, state0 ); sipReleaseType( p1, sipType_QVector_0100QgsPoint, state1 ); } else { sipRes = QgsGeometry::compare( *p0, *p1, a2 ); } } else if ( PyList_Check( o0 ) && PyList_Check( o1 ) && PyList_GET_SIZE( o0 ) && PyList_GET_SIZE( o1 ) ) { PyObject *oo0 = PyList_GetItem( o0, 0 ); PyObject *oo1 = PyList_GetItem( o1, 0 ); if ( oo0 && oo1 ) { // compare polygon - polygon if ( sipCanConvertToType( oo0, sipType_QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( oo1, sipType_QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( a0, sipType_QVector_0600QVector_0100QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( a1, sipType_QVector_0600QVector_0100QgsPoint, SIP_NOT_NONE ) ) { QgsPolygon *p0; QgsPolygon *p1; p0 = reinterpret_cast( sipConvertToType( a0, sipType_QVector_0600QVector_0100QgsPoint, 0, SIP_NOT_NONE, &state0, &sipIsErr ) ); p1 = reinterpret_cast( sipConvertToType( a1, sipType_QVector_0600QVector_0100QgsPoint, 0, SIP_NOT_NONE, &state1, &sipIsErr ) ); if ( sipIsErr ) { sipReleaseType( p0, sipType_QVector_0600QVector_0100QgsPoint, state0 ); sipReleaseType( p1, sipType_QVector_0600QVector_0100QgsPoint, state1 ); } else { sipRes = QgsGeometry::compare( *p0, *p1, a2 ); } } else if ( PyList_Check( oo0 ) && PyList_Check( oo1 ) && PyList_GET_SIZE( oo0 ) && PyList_GET_SIZE( oo1 ) ) { PyObject *ooo0 = PyList_GetItem( oo0, 0 ); PyObject *ooo1 = PyList_GetItem( oo1, 0 ); if ( ooo0 && ooo1 ) { // compare multipolygon - multipolygon if ( sipCanConvertToType( ooo0, sipType_QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( ooo1, sipType_QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( a0, sipType_QVector_0600QVector_0600QVector_0100QgsPoint, SIP_NOT_NONE ) && sipCanConvertToType( a1, sipType_QVector_0600QVector_0600QVector_0100QgsPoint, SIP_NOT_NONE ) ) { QgsMultiPolygon *p0; QgsMultiPolygon *p1; p0 = reinterpret_cast( sipConvertToType( a0, sipType_QVector_0600QVector_0600QVector_0100QgsPoint, 0, SIP_NOT_NONE, &state0, &sipIsErr ) ); p1 = reinterpret_cast( sipConvertToType( a1, sipType_QVector_0600QVector_0600QVector_0100QgsPoint, 0, SIP_NOT_NONE, &state1, &sipIsErr ) ); if ( sipIsErr ) { sipReleaseType( p0, sipType_QVector_0600QVector_0600QVector_0100QgsPoint, state0 ); sipReleaseType( p1, sipType_QVector_0600QVector_0600QVector_0100QgsPoint, state1 ); } else { sipRes = QgsGeometry::compare( *p0, *p1, a2 ); } } } } } } } } } %End QgsGeometry smooth( const unsigned int iterations = 1, const double offset = 0.25, double minimumDistance = -1.0, double maxAngle = 180.0 ) const; %Docstring Smooths a geometry by rounding off corners using the Chaikin algorithm. This operation roughly doubles the number of vertices in a geometry. \param iterations number of smoothing iterations to run. More iterations results in a smoother geometry \param offset fraction of line to create new vertices along, between 0 and 1.0, e.g., the default value of 0.25 will create new vertices 25% and 75% along each line segment of the geometry for each iteration. Smaller values result in "tighter" smoothing. \param minimumDistance minimum segment length to apply smoothing to \param maxAngle maximum angle at node (0-180) at which smoothing will be applied .. versionadded:: 2.9 :rtype: QgsGeometry %End static QgsGeometryEngine *createGeometryEngine( const QgsAbstractGeometry *geometry ) /Factory/; %Docstring Creates and returns a new geometry engine :rtype: QgsGeometryEngine %End static void convertPointList( const QList &input, QgsPointSequence &output ); %Docstring Upgrades a point list from QgsPoint to QgsPointV2 \param input list of QgsPoint objects to be upgraded \param output destination for list of points converted to QgsPointV2 %End static void convertPointList( const QgsPointSequence &input, QList &output ); %Docstring Downgrades a point list from QgsPointV2 to QgsPoint \param input list of QgsPointV2 objects to be downgraded \param output destination for list of points converted to QgsPoint %End operator QVariant() const; %Docstring Allows direct construction of QVariants from geometry. %End operator bool() const; %Docstring Returns true if the geometry is non empty (ie, isNull() returns false), or false if it is an empty, uninitialized geometry (ie, isNull() returns true). .. versionadded:: 3.0 %End }; // class QgsGeometry /************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgsgeometry.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/