# -*- coding: utf-8 -*- """ *************************************************************************** RandomSelectionWithinSubsets.py --------------------- Date : August 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ from builtins import range __author__ = 'Victor Olaya' __date__ = 'August 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import random from qgis.core import (QgsApplication, QgsFeatureSink, QgsProcessingUtils, QgsProcessingParameterFeatureSource, QgsProcessingParameterEnum, QgsProcessingParameterField, QgsProcessingParameterNumber, QgsProcessingParameterFeatureSink, QgsProcessingOutputVectorLayer) from collections import defaultdict from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm from processing.core.GeoAlgorithmExecutionException import GeoAlgorithmExecutionException class RandomExtractWithinSubsets(QgisAlgorithm): INPUT = 'INPUT' METHOD = 'METHOD' NUMBER = 'NUMBER' FIELD = 'FIELD' OUTPUT = 'OUTPUT' def group(self): return self.tr('Vector selection tools') def __init__(self): super().__init__() self.methods = [self.tr('Number of selected features'), self.tr('Percentage of selected features')] self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT, self.tr('Input layer'))) self.addParameter(QgsProcessingParameterField(self.FIELD, self.tr('ID field'), None, self.INPUT)) self.addParameter(QgsProcessingParameterEnum(self.METHOD, self.tr('Method'), self.methods, False, 0)) self.addParameter(QgsProcessingParameterNumber(self.NUMBER, self.tr('Number/percentage of selected features'), QgsProcessingParameterNumber.Integer, 10, False, 0.0, 999999999999.0)) self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Extracted (random stratified)'))) self.addOutput(QgsProcessingOutputVectorLayer(self.OUTPUT, self.tr('Extracted (random stratified)'))) self.source = None self.method = None self.field = None self.value = None self.sink = None self.dest_id = None def name(self): return 'randomextractwithinsubsets' def displayName(self): return self.tr('Random extract within subsets') def prepareAlgorithm(self, parameters, context, feedback): self.source = self.parameterAsSource(parameters, self.INPUT, context) self.method = self.parameterAsEnum(parameters, self.METHOD, context) self.field = self.parameterAsString(parameters, self.FIELD, context) self.value = self.parameterAsInt(parameters, self.NUMBER, context) (self.sink, self.dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context, self.source.fields(), self.source.wkbType(), self.source.sourceCrs()) return True def processAlgorithm(self, context, feedback): index = self.source.fields().lookupField(self.field) features = self.source.getFeatures() featureCount = self.source.featureCount() unique = self.source.uniqueValues(index) if self.method == 0: if self.value > featureCount: raise GeoAlgorithmExecutionException( self.tr('Selected number is greater that feature count. ' 'Choose lesser value and try again.')) else: if self.value > 100: raise GeoAlgorithmExecutionException( self.tr("Percentage can't be greater than 100. Set " "correct value and try again.")) self.value = self.value / 100.0 selran = [] total = 100.0 / (featureCount * len(unique)) if featureCount else 1 classes = defaultdict(list) for i, feature in enumerate(features): if feedback.isCanceled(): break attrs = feature.attributes() classes[attrs[index]].append(feature) feedback.setProgress(int(i * total)) for subset in classes.values(): selValue = self.value if self.method != 1 else int(round(self.value * len(subset), 0)) selran.extend(random.sample(subset, selValue)) total = 100.0 / featureCount if featureCount else 1 for (i, feat) in enumerate(selran): if feedback.isCanceled(): break self.sink.addFeature(feat, QgsFeatureSink.FastInsert) feedback.setProgress(int(i * total)) return True def postProcessAlgorithm(self, context, feedback): return {self.OUTPUT: self.dest_id}