# -*- coding: utf-8 -*- """ *************************************************************************** BasicStatistics.py --------------------- Date : November 2016 Copyright : (C) 2016 by Nyall Dawson Email : nyall dot dawson at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Nyall Dawson' __date__ = 'November 2016' __copyright__ = '(C) 2016, Nyall Dawson' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os import codecs from qgis.PyQt.QtCore import QVariant from qgis.PyQt.QtGui import QIcon from qgis.core import (QgsStatisticalSummary, QgsFeatureSink, QgsStringStatisticalSummary, QgsDateTimeStatisticalSummary, QgsFeatureRequest, QgsProcessingUtils, QgsProcessingParameterFeatureSource, QgsProcessingParameterField, QgsProcessingParameterFileOutput, QgsProcessingOutputHtml, QgsProcessingOutputNumber) from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] class BasicStatisticsForField(QgisAlgorithm): INPUT_LAYER = 'INPUT_LAYER' FIELD_NAME = 'FIELD_NAME' OUTPUT_HTML_FILE = 'OUTPUT_HTML_FILE' MIN = 'MIN' MAX = 'MAX' COUNT = 'COUNT' UNIQUE = 'UNIQUE' EMPTY = 'EMPTY' FILLED = 'FILLED' MIN_LENGTH = 'MIN_LENGTH' MAX_LENGTH = 'MAX_LENGTH' MEAN_LENGTH = 'MEAN_LENGTH' CV = 'CV' SUM = 'SUM' MEAN = 'MEAN' STD_DEV = 'STD_DEV' RANGE = 'RANGE' MEDIAN = 'MEDIAN' MINORITY = 'MINORITY' MAJORITY = 'MAJORITY' FIRSTQUARTILE = 'FIRSTQUARTILE' THIRDQUARTILE = 'THIRDQUARTILE' IQR = 'IQR' def icon(self): return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'basic_statistics.png')) def tags(self): return self.tr('stats,statistics,date,time,datetime,string,number,text,table,layer,maximum,minimum,mean,average,standard,deviation,' 'count,distinct,unique,variance,median,quartile,range,majority,minority').split(',') def group(self): return self.tr('Vector table tools') def __init__(self): super().__init__() self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT_LAYER, self.tr('Input layer'))) self.addParameter(QgsProcessingParameterField(self.FIELD_NAME, self.tr('Field to calculate statistics on'), None, self.INPUT_LAYER, QgsProcessingParameterField.Any)) self.addParameter(QgsProcessingParameterFileOutput(self.OUTPUT_HTML_FILE, self.tr('Statistics'), self.tr('HTML files (*.html)'), None, True)) self.addOutput(QgsProcessingOutputHtml(self.OUTPUT_HTML_FILE, self.tr('Statistics'))) self.addOutput(QgsProcessingOutputNumber(self.COUNT, self.tr('Count'))) self.addOutput(QgsProcessingOutputNumber(self.UNIQUE, self.tr('Number of unique values'))) self.addOutput(QgsProcessingOutputNumber(self.EMPTY, self.tr('Number of empty (null) values'))) self.addOutput(QgsProcessingOutputNumber(self.FILLED, self.tr('Number of non-empty values'))) self.addOutput(QgsProcessingOutputNumber(self.MIN, self.tr('Minimum value'))) self.addOutput(QgsProcessingOutputNumber(self.MAX, self.tr('Maximum value'))) self.addOutput(QgsProcessingOutputNumber(self.MIN_LENGTH, self.tr('Minimum length'))) self.addOutput(QgsProcessingOutputNumber(self.MAX_LENGTH, self.tr('Maximum length'))) self.addOutput(QgsProcessingOutputNumber(self.MEAN_LENGTH, self.tr('Mean length'))) self.addOutput(QgsProcessingOutputNumber(self.CV, self.tr('Coefficient of Variation'))) self.addOutput(QgsProcessingOutputNumber(self.SUM, self.tr('Sum'))) self.addOutput(QgsProcessingOutputNumber(self.MEAN, self.tr('Mean value'))) self.addOutput(QgsProcessingOutputNumber(self.STD_DEV, self.tr('Standard deviation'))) self.addOutput(QgsProcessingOutputNumber(self.RANGE, self.tr('Range'))) self.addOutput(QgsProcessingOutputNumber(self.MEDIAN, self.tr('Median'))) self.addOutput(QgsProcessingOutputNumber(self.MINORITY, self.tr('Minority (rarest occurring value)'))) self.addOutput(QgsProcessingOutputNumber(self.MAJORITY, self.tr('Majority (most frequently occurring value)'))) self.addOutput(QgsProcessingOutputNumber(self.FIRSTQUARTILE, self.tr('First quartile'))) self.addOutput(QgsProcessingOutputNumber(self.THIRDQUARTILE, self.tr('Third quartile'))) self.addOutput(QgsProcessingOutputNumber(self.IQR, self.tr('Interquartile Range (IQR)'))) self.source = None self.field = None self.field_name = None self.output_file = None self.results = {} def name(self): return 'basicstatisticsforfields' def displayName(self): return self.tr('Basic statistics for fields') def prepareAlgorithm(self, parameters, context, feedback): self.source = self.parameterAsSource(parameters, self.INPUT_LAYER, context) self.field_name = self.parameterAsString(parameters, self.FIELD_NAME, context) self.field = self.source.fields().at(self.source.fields().lookupField(self.field_name)) self.output_file = self.parameterAsFileOutput(parameters, self.OUTPUT_HTML_FILE, context) return True def processAlgorithm(self, context, feedback): request = QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry).setSubsetOfAttributes([self.field_name], self.source.fields()) features = self.source.getFeatures(request) count = self.source.featureCount() data = [] data.append(self.tr('Analyzed field: {}').format(self.field_name)) if self.field.isNumeric(): d, self.results = self.calcNumericStats(features, feedback, self.field, count) data.extend(d) elif self.field.type() in (QVariant.Date, QVariant.Time, QVariant.DateTime): d, self.results = self.calcDateTimeStats(features, feedback, self.field, count) data.extend(d) else: d, self.results = self.calcStringStats(features, feedback, self.field, count) data.extend(d) if self.output_file: self.createHTML(self.output_file, data) self.results[self.OUTPUT_HTML_FILE] = self.output_file return True def postProcessAlgorithm(self, context, feedback): return self.results def calcNumericStats(self, features, feedback, field, count): total = 100.0 / count if count else 0 stat = QgsStatisticalSummary() for current, ft in enumerate(features): if feedback.isCanceled(): break stat.addVariant(ft[field.name()]) feedback.setProgress(int(current * total)) stat.finalize() cv = stat.stDev() / stat.mean() if stat.mean() != 0 else 0 results = {self.COUNT: stat.count(), self.UNIQUE: stat.variety(), self.EMPTY: stat.countMissing(), self.FILLED: count - stat.countMissing(), self.MIN: stat.min(), self.MAX: stat.max(), self.RANGE: stat.range(), self.SUM: stat.sum(), self.MEAN: stat.mean(), self.MEDIAN: stat.median(), self.STD_DEV: stat.stDev(), self.CV: cv, self.MINORITY: stat.minority(), self.MAJORITY: stat.majority(), self.FIRSTQUARTILE: stat.firstQuartile(), self.THIRDQUARTILE: stat.thirdQuartile(), self.IQR: stat.interQuartileRange()} data = [] data.append(self.tr('Count: {}').format(stat.count())) data.append(self.tr('Unique values: {}').format(stat.variety())) data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing())) data.append(self.tr('Minimum value: {}').format(stat.min())) data.append(self.tr('Maximum value: {}').format(stat.max())) data.append(self.tr('Range: {}').format(stat.range())) data.append(self.tr('Sum: {}').format(stat.sum())) data.append(self.tr('Mean value: {}').format(stat.mean())) data.append(self.tr('Median value: {}').format(stat.median())) data.append(self.tr('Standard deviation: {}').format(stat.stDev())) data.append(self.tr('Coefficient of Variation: {}').format(cv)) data.append(self.tr('Minority (rarest occurring value): {}').format(stat.minority())) data.append(self.tr('Majority (most frequently occurring value): {}').format(stat.majority())) data.append(self.tr('First quartile: {}').format(stat.firstQuartile())) data.append(self.tr('Third quartile: {}').format(stat.thirdQuartile())) data.append(self.tr('Interquartile Range (IQR): {}').format(stat.interQuartileRange())) return data, results def calcStringStats(self, features, feedback, field, count): total = 100.0 / count if count else 1 stat = QgsStringStatisticalSummary() for current, ft in enumerate(features): if feedback.isCanceled(): break stat.addValue(ft[field.name()]) feedback.setProgress(int(current * total)) stat.finalize() results = {self.COUNT: stat.count(), self.UNIQUE: stat.countDistinct(), self.EMPTY: stat.countMissing(), self.FILLED: stat.count() - stat.countMissing(), self.MIN: stat.min(), self.MAX: stat.max(), self.MIN_LENGTH: stat.minLength(), self.MAX_LENGTH: stat.maxLength(), self.MEAN_LENGTH: stat.meanLength()} data = [] data.append(self.tr('Count: {}').format(count)) data.append(self.tr('Unique values: {}').format(stat.countDistinct())) data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing())) data.append(self.tr('Minimum value: {}').format(stat.min())) data.append(self.tr('Maximum value: {}').format(stat.max())) data.append(self.tr('Minimum length: {}').format(stat.minLength())) data.append(self.tr('Maximum length: {}').format(stat.maxLength())) data.append(self.tr('Mean length: {}').format(stat.meanLength())) return data, results def calcDateTimeStats(self, features, feedback, field, count): total = 100.0 / count if count else 1 stat = QgsDateTimeStatisticalSummary() for current, ft in enumerate(features): if feedback.isCanceled(): break stat.addValue(ft[field.name()]) feedback.setProgress(int(current * total)) stat.finalize() results = {self.COUNT: stat.count(), self.UNIQUE: stat.countDistinct(), self.EMPTY: stat.countMissing(), self.FILLED: stat.count() - stat.countMissing(), self.MIN: stat.statistic(QgsDateTimeStatisticalSummary.Min), self.MAX: stat.statistic(QgsDateTimeStatisticalSummary.Max)} data = [] data.append(self.tr('Count: {}').format(count)) data.append(self.tr('Unique values: {}').format(stat.countDistinct())) data.append(self.tr('NULL (missing) values: {}').format(stat.countMissing())) data.append(self.tr('Minimum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Min)))) data.append(self.tr('Maximum value: {}').format(field.displayString(stat.statistic(QgsDateTimeStatisticalSummary.Max)))) return data, results def createHTML(self, outputFile, algData): with codecs.open(outputFile, 'w', encoding='utf-8') as f: f.write('
\n') f.write('\n') for s in algData: f.write('' + str(s) + '
\n') f.write('\n')