/************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgslinestring.h * * * * Do not edit manually ! Edit header and run scripts/sipify.py again * ************************************************************************/ class QgsLineString: QgsCurve { %Docstring(signature="appended") Line string geometry type, with support for z-dimension and m-values. %End %TypeHeaderCode #include "qgslinestring.h" %End public: QgsLineString() /HoldGIL/; %Docstring Constructor for an empty linestring geometry. %End QgsLineString( SIP_PYOBJECT points /TypeHint="Sequence[Union[QgsPoint, QgsPointXY, Sequence[float]]]"/ ) /HoldGIL/ [( const QVector &x, const QVector &y, const QVector &z = QVector(), const QVector &m = QVector(), bool is25DType = false )]; %Docstring Construct a linestring from a sequence of points (:py:class:`QgsPoint` objects, :py:class:`QgsPointXY` objects, or sequences of float values). The linestring Z and M type will be set based on the type of the first point in the sequence. .. versionadded:: 3.20 %End %MethodCode if ( !PySequence_Check( a0 ) ) { PyErr_SetString( PyExc_TypeError, QStringLiteral( "A sequence of QgsPoint, QgsPointXY or array of floats is expected" ).toUtf8().constData() ); sipIsErr = 1; } else { int state; const int size = PySequence_Size( a0 ); QVector< double > xl; QVector< double > yl; bool hasZ = false; QVector< double > zl; bool hasM = false; QVector< double > ml; xl.reserve( size ); yl.reserve( size ); bool is25D = false; sipIsErr = 0; for ( int i = 0; i < size; ++i ) { PyObject *value = PySequence_GetItem( a0, i ); if ( !value ) { PyErr_SetString( PyExc_TypeError, QStringLiteral( "Invalid type at index %1." ).arg( i ) .toUtf8().constData() ); sipIsErr = 1; break; } if ( PySequence_Check( value ) ) { const int elementSize = PySequence_Size( value ); if ( elementSize < 2 || elementSize > 4 ) { sipIsErr = 1; PyErr_SetString( PyExc_TypeError, QStringLiteral( "Invalid sequence size at index %1. Expected an array of 2-4 float values, got %2." ).arg( i ).arg( elementSize ).toUtf8().constData() ); Py_DECREF( value ); break; } else { sipIsErr = 0; for ( int j = 0; j < elementSize; ++j ) { PyObject *element = PySequence_GetItem( value, j ); if ( !element ) { PyErr_SetString( PyExc_TypeError, QStringLiteral( "Invalid type at index %1." ).arg( i ) .toUtf8().constData() ); sipIsErr = 1; break; } PyErr_Clear(); double d = PyFloat_AsDouble( element ); if ( PyErr_Occurred() ) { Py_DECREF( value ); sipIsErr = 1; break; } if ( j == 0 ) xl.append( d ); else if ( j == 1 ) yl.append( d ); if ( i == 0 && j == 2 ) { hasZ = true; zl.reserve( size ); zl.append( d ); } else if ( i > 0 && j == 2 && hasZ ) { zl.append( d ); } if ( i == 0 && j == 3 ) { hasM = true; ml.reserve( size ); ml.append( d ); } else if ( i > 0 && j == 3 && hasM ) { ml.append( d ); } Py_DECREF( element ); } if ( hasZ && elementSize < 3 ) zl.append( std::numeric_limits< double >::quiet_NaN() ); if ( hasM && elementSize < 4 ) ml.append( std::numeric_limits< double >::quiet_NaN() ); Py_DECREF( value ); if ( sipIsErr ) { break; } } } else { if ( sipCanConvertToType( value, sipType_QgsPointXY, SIP_NOT_NONE ) ) { sipIsErr = 0; QgsPointXY *p = reinterpret_cast( sipConvertToType( value, sipType_QgsPointXY, 0, SIP_NOT_NONE, &state, &sipIsErr ) ); if ( !sipIsErr ) { xl.append( p->x() ); yl.append( p->y() ); } sipReleaseType( p, sipType_QgsPointXY, state ); } else if ( sipCanConvertToType( value, sipType_QgsPoint, SIP_NOT_NONE ) ) { sipIsErr = 0; QgsPoint *p = reinterpret_cast( sipConvertToType( value, sipType_QgsPoint, 0, SIP_NOT_NONE, &state, &sipIsErr ) ); if ( !sipIsErr ) { xl.append( p->x() ); yl.append( p->y() ); if ( i == 0 && p->is3D() ) { hasZ = true; zl.reserve( size ); zl.append( p->z() ); } else if ( i > 0 && hasZ ) { zl.append( p->z() ); } if ( i == 0 && p->isMeasure() ) { hasM = true; ml.reserve( size ); ml.append( p->m() ); } else if ( i > 0 && hasM ) { ml.append( p->m() ); } if ( i == 0 && p->wkbType() == Qgis::WkbType::Point25D ) is25D = true; } sipReleaseType( p, sipType_QgsPoint, state ); } else { sipIsErr = 1; } Py_DECREF( value ); if ( sipIsErr ) { // couldn't convert the sequence value to a QgsPoint or QgsPointXY PyErr_SetString( PyExc_TypeError, QStringLiteral( "Invalid type at index %1. Expected QgsPoint, QgsPointXY or array of floats." ).arg( i ) .toUtf8().constData() ); break; } } } if ( sipIsErr == 0 ) sipCpp = new sipQgsLineString( QgsLineString( xl, yl, zl, ml, is25D ) ); } %End explicit QgsLineString( const QgsLineSegment2D &segment ) /HoldGIL/; %Docstring Construct a linestring from a single 2d line segment. .. versionadded:: 3.2 %End QgsLineString( const QVector &x, const QVector &y, const QVector &z = QVector(), const QVector &m = QVector(), bool is25DType = false ) /HoldGIL/; %Docstring Construct a linestring from arrays of coordinates. If the z or m arrays are non-empty then the resultant linestring will have z and m types accordingly. This constructor is more efficient then calling :py:func:`~QgsLineString.setPoints` or repeatedly calling :py:func:`~QgsLineString.addVertex` If the ``z`` vector is filled, then the geometry type will either be a LineStringZ(M) or LineString25D depending on the ``is25DType`` argument. If ``is25DType`` is ``True`` (and the ``m`` vector is unfilled) then the created Linestring will be a LineString25D type. Otherwise, the LineString will be LineStringZ (or LineStringZM) type. If the sizes of ``x`` and ``y`` are non-equal then the resultant linestring will be created using the minimum size of these arrays. %End QgsLineString( const QgsPoint &p1, const QgsPoint &p2 ) /HoldGIL/; %Docstring Constructs a linestring with a single segment from ``p1`` to ``p2``. .. versionadded:: 3.2 %End static QgsLineString *fromBezierCurve( const QgsPoint &start, const QgsPoint &controlPoint1, const QgsPoint &controlPoint2, const QgsPoint &end, int segments = 30 ) /Factory/; %Docstring Returns a new linestring created by segmentizing the bezier curve between ``start`` and ``end``, with the specified control points. The ``segments`` parameter controls how many line segments will be present in the returned linestring. Any z or m values present in the input coordinates will be interpolated along with the x and y values. .. versionadded:: 3.10 %End static QgsLineString *fromQPolygonF( const QPolygonF &polygon ) /Factory/; %Docstring Returns a new linestring from a QPolygonF ``polygon`` input. .. versionadded:: 3.10 %End public: virtual bool fuzzyEqual( const QgsAbstractGeometry &other, double epsilon = 1e-8 ) const /HoldGIL/; virtual bool fuzzyDistanceEqual( const QgsAbstractGeometry &other, double epsilon = 1e-8 ) const /HoldGIL/; virtual bool equals( const QgsCurve &other ) const; SIP_PYOBJECT pointN( int i ) const /TypeHint="QgsPoint"/; %Docstring Returns the point at the specified index. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { std::unique_ptr< QgsPoint > p; if ( a0 >= 0 ) p = std::make_unique< QgsPoint >( sipCpp->pointN( a0 ) ); else // negative index, count backwards from end p = std::make_unique< QgsPoint >( sipCpp->pointN( count + a0 ) ); sipRes = sipConvertFromType( p.release(), sipType_QgsPoint, Py_None ); } %End virtual double xAt( int index ) const; %Docstring Returns the x-coordinate of the specified node in the line string. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) return PyFloat_FromDouble( sipCpp->xAt( a0 ) ); else return PyFloat_FromDouble( sipCpp->xAt( count + a0 ) ); } %End virtual double yAt( int index ) const; %Docstring Returns the y-coordinate of the specified node in the line string. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) return PyFloat_FromDouble( sipCpp->yAt( a0 ) ); else return PyFloat_FromDouble( sipCpp->yAt( count + a0 ) ); } %End virtual double zAt( int index ) const; %Docstring Returns the z-coordinate of the specified node in the line string. If the LineString does not have a z-dimension then ``NaN`` will be returned. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) return PyFloat_FromDouble( sipCpp->zAt( a0 ) ); else return PyFloat_FromDouble( sipCpp->zAt( count + a0 ) ); } %End virtual double mAt( int index ) const; %Docstring Returns the m-coordinate of the specified node in the line string. If the LineString does not have a m-dimension then ``NaN`` will be returned. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) return PyFloat_FromDouble( sipCpp->mAt( a0 ) ); else return PyFloat_FromDouble( sipCpp->mAt( count + a0 ) ); } %End void setXAt( int index, double x ); %Docstring Sets the x-coordinate of the specified node in the line string. The corresponding node must already exist in line string. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. .. seealso:: :py:func:`xAt` %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) sipCpp->setXAt( a0, a1 ); else sipCpp->setXAt( count + a0, a1 ); } %End void setYAt( int index, double y ); %Docstring Sets the y-coordinate of the specified node in the line string. The corresponding node must already exist in line string. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. .. seealso:: :py:func:`yAt` %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) sipCpp->setYAt( a0, a1 ); else sipCpp->setYAt( count + a0, a1 ); } %End void setZAt( int index, double z ); %Docstring Sets the z-coordinate of the specified node in the line string. The corresponding node must already exist in line string and the line string must have z-dimension. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. .. seealso:: :py:func:`zAt` %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) sipCpp->setZAt( a0, a1 ); else sipCpp->setZAt( count + a0, a1 ); } %End void setMAt( int index, double m ); %Docstring Sets the m-coordinate of the specified node in the line string. The corresponding node must already exist in line string and the line string must have m-dimension. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified index exists. .. seealso:: :py:func:`mAt` %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 >= 0 ) sipCpp->setMAt( a0, a1 ); else sipCpp->setMAt( count + a0, a1 ); } %End void setPoints( const QgsPointSequence &points ); %Docstring Resets the line string to match the specified list of points. The line string will inherit the dimensionality of the first point in the list. :param points: new points for line string. If empty, line string will be cleared. %End void append( const QgsLineString *line ); %Docstring Appends the contents of another line string to the end of this line string. :param line: line to append. Ownership is not transferred. %End void addVertex( const QgsPoint &pt ); %Docstring Adds a new vertex to the end of the line string. :param pt: vertex to add %End void close(); %Docstring Closes the line string by appending the first point to the end of the line, if it is not already closed. %End virtual QgsCompoundCurve *toCurveType() const /Factory/; %Docstring Returns the geometry converted to the more generic curve type :py:class:`QgsCompoundCurve` :return: the converted geometry. Caller takes ownership %End void extend( double startDistance, double endDistance ); %Docstring Extends the line geometry by extrapolating out the start or end of the line by a specified distance. Lines are extended using the bearing of the first or last segment in the line. %End virtual QString geometryType() const /HoldGIL/; virtual int dimension() const /HoldGIL/; virtual QgsLineString *clone() const /Factory/; virtual void clear(); virtual bool isEmpty() const /HoldGIL/; int indexOf( const QgsPoint &point ) const final; virtual bool isValid( QString &error /Out/, Qgis::GeometryValidityFlags flags = Qgis::GeometryValidityFlags() ) const; virtual QgsLineString *snappedToGrid( double hSpacing, double vSpacing, double dSpacing = 0, double mSpacing = 0, bool removeRedundantPoints = false ) const /Factory/; virtual bool removeDuplicateNodes( double epsilon = 4 * DBL_EPSILON, bool useZValues = false ); virtual bool isClosed() const /HoldGIL/; virtual bool isClosed2D() const /HoldGIL/; virtual bool boundingBoxIntersects( const QgsRectangle &rectangle ) const /HoldGIL/; virtual bool boundingBoxIntersects( const QgsBox3D &box3d ) const /HoldGIL/; QVector< QgsVertexId > collectDuplicateNodes( double epsilon = 4 * DBL_EPSILON, bool useZValues = false ) const; %Docstring Returns a list of any duplicate nodes contained in the geometry, within the specified tolerance. If ``useZValues`` is ``True`` then z values will also be considered when testing for duplicates. .. versionadded:: 3.16 %End virtual QPolygonF asQPolygonF() const; virtual QgsLineString *simplifyByDistance( double tolerance ) const /Factory/; virtual bool fromWkb( QgsConstWkbPtr &wkb ); virtual bool fromWkt( const QString &wkt ); virtual int wkbSize( QgsAbstractGeometry::WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const; virtual QByteArray asWkb( QgsAbstractGeometry::WkbFlags flags = QgsAbstractGeometry::WkbFlags() ) const; virtual QString asWkt( int precision = 17 ) const; virtual QDomElement asGml2( QDomDocument &doc, int precision = 17, const QString &ns = "gml", QgsAbstractGeometry::AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const; virtual QDomElement asGml3( QDomDocument &doc, int precision = 17, const QString &ns = "gml", QgsAbstractGeometry::AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const; virtual QString asKml( int precision = 17 ) const; virtual double length() const /HoldGIL/; QVector splitToDisjointXYParts() const /Factory/; %Docstring Divides the linestring into parts that don't share any points or lines. This method throws away Z and M coordinates. The ownership of returned pointers is transferred to the caller. .. versionadded:: 3.40 %End double length3D() const /HoldGIL/; %Docstring Returns the length in 3D world of the line string. If it is not a 3D line string, return its 2D length. .. seealso:: :py:func:`length` .. versionadded:: 3.10 %End virtual QgsPoint startPoint() const /HoldGIL/; virtual QgsPoint endPoint() const /HoldGIL/; virtual QgsLineString *curveToLine( double tolerance = M_PI_2 / 90, SegmentationToleranceType toleranceType = MaximumAngle ) const /Factory/; %Docstring Returns a new line string geometry corresponding to a segmentized approximation of the curve. :param tolerance: segmentation tolerance :param toleranceType: maximum segmentation angle or maximum difference between approximation and curve %End virtual int numPoints() const /HoldGIL/; virtual int nCoordinates() const /HoldGIL/; virtual void points( QgsPointSequence &pt /Out/ ) const; virtual void draw( QPainter &p ) const; virtual void transform( const QgsCoordinateTransform &ct, Qgis::TransformDirection d = Qgis::TransformDirection::Forward, bool transformZ = false ) throw( QgsCsException ); virtual void transform( const QTransform &t, double zTranslate = 0.0, double zScale = 1.0, double mTranslate = 0.0, double mScale = 1.0 ); virtual void addToPainterPath( QPainterPath &path ) const; virtual void drawAsPolygon( QPainter &p ) const; virtual bool insertVertex( QgsVertexId position, const QgsPoint &vertex ); virtual bool moveVertex( QgsVertexId position, const QgsPoint &newPos ); virtual bool deleteVertex( QgsVertexId position ); virtual QgsLineString *reversed() const /Factory/; virtual QgsPoint *interpolatePoint( double distance ) const /Factory/; virtual QgsLineString *curveSubstring( double startDistance, double endDistance ) const /Factory/; virtual double closestSegment( const QgsPoint &pt, QgsPoint &segmentPt /Out/, QgsVertexId &vertexAfter /Out/, int *leftOf /Out/ = 0, double epsilon = 4 * DBL_EPSILON ) const; virtual bool pointAt( int node, QgsPoint &point, Qgis::VertexType &type ) const; virtual QgsPoint centroid() const; virtual void sumUpArea( double &sum /Out/ ) const; %Docstring Calculates the shoelace/triangle formula sum for the points in the linestring. If the linestring is closed (i.e. a polygon) then the polygon area is equal to the absolute value of the sum. Please note that the sum will be negative if the points are defined in clockwise order. Therefore, if you want to use the sum as an area (as the method name indicates) then you probably should use the absolute value, since otherwise a bug can be introduced (such as the bug fixed for github issue 49578) .. seealso:: https://en.wikipedia.org/wiki/Shoelace_formula#Triangle_formula %End virtual double vertexAngle( QgsVertexId vertex ) const; virtual double segmentLength( QgsVertexId startVertex ) const; virtual bool addZValue( double zValue = 0 ); virtual bool addMValue( double mValue = 0 ); virtual bool dropZValue(); virtual bool dropMValue(); virtual void swapXy(); virtual bool convertTo( Qgis::WkbType type ); virtual bool transform( QgsAbstractGeometryTransformer *transformer, QgsFeedback *feedback = 0 ); void scroll( int firstVertexIndex ) final; virtual QgsLineString *createEmptyWithSameType() const /Factory/; SIP_PYOBJECT __repr__(); %MethodCode QString wkt = sipCpp->asWkt(); if ( wkt.length() > 1000 ) wkt = wkt.left( 1000 ) + QStringLiteral( "..." ); QString str = QStringLiteral( "" ).arg( wkt ); sipRes = PyUnicode_FromString( str.toUtf8().constData() ); %End SIP_PYOBJECT __getitem__( int index ) /TypeHint="QgsPoint"/; %Docstring Returns the point at the specified ``index``. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified ``index`` exists. .. versionadded:: 3.6 %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { std::unique_ptr< QgsPoint > p; if ( a0 >= 0 ) p = std::make_unique< QgsPoint >( sipCpp->pointN( a0 ) ); else p = std::make_unique< QgsPoint >( sipCpp->pointN( count + a0 ) ); sipRes = sipConvertFromType( p.release(), sipType_QgsPoint, Py_None ); } %End void __setitem__( int index, const QgsPoint &point ); %Docstring Sets the point at the specified ``index``. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified ``index`` exists. .. versionadded:: 3.6 %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 < -count || a0 >= count ) { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } else { if ( a0 < 0 ) a0 = count + a0; sipCpp->setXAt( a0, a1->x() ); sipCpp->setYAt( a0, a1->y() ); if ( sipCpp->isMeasure() ) sipCpp->setMAt( a0, a1->m() ); if ( sipCpp->is3D() ) sipCpp->setZAt( a0, a1->z() ); } %End void __delitem__( int index ); %Docstring Deletes the vertex at the specified ``index``. Indexes can be less than 0, in which case they correspond to positions from the end of the line. E.g. an index of -1 corresponds to the last point in the line. :raises IndexError: if no point with the specified ``index`` exists. .. versionadded:: 3.6 %End %MethodCode const int count = sipCpp->numPoints(); if ( a0 >= 0 && a0 < count ) sipCpp->deleteVertex( QgsVertexId( -1, -1, a0 ) ); else if ( a0 < 0 && a0 >= -count ) sipCpp->deleteVertex( QgsVertexId( -1, -1, count + a0 ) ); else { PyErr_SetString( PyExc_IndexError, QByteArray::number( a0 ) ); sipIsErr = 1; } %End QgsBox3D calculateBoundingBox3d() const /Deprecated/; %Docstring Calculates the minimal 3D bounding box for the geometry. Deprecated: use calculateBoundingBox3D instead .. seealso:: :py:func:`calculateBoundingBox` .. versionadded:: 3.26 .. deprecated:: 3.34 %End virtual QgsBox3D calculateBoundingBox3D() const; %Docstring Calculates the minimal 3D bounding box for the geometry. .. seealso:: :py:func:`calculateBoundingBox` .. versionadded:: 3.34 %End QgsLineString *measuredLine( double start, double end ) const /Factory/; %Docstring Re-write the measure ordinate (or add one, if it isn't already there) interpolating the measure between the supplied ``start`` and ``end`` values. .. versionadded:: 3.36 %End QgsLineString *interpolateM( bool use3DDistance = true ) const /Factory/; %Docstring Returns a copy of this line with all missing (NaN) m values interpolated from m values of surrounding vertices. If the line does not contain m values, ``None`` is returned. The ``use3DDistance`` controls whether 2D or 3D distances between vertices should be used during interpolation. This option is only considered for lines with z values. .. seealso:: :py:func:`lineLocatePointByM` .. versionadded:: 3.38 %End bool lineLocatePointByM( double m, double &x /Out/, double &y /Out/, double &z /Out/, double &distanceFromStart /Out/, bool use3DDistance = true ) const; %Docstring Attempts to locate a point on the linestring by m value. This method will linearly interpolate along line segments to find the point which corresponds to the specified m value. If the linestring contains sections with constant m values matching ``m``, then the interpolated point will be located at the center of these sections. Any missing (NaN) values in the linestring will be linearly interpolated from the m values of surrounding vertices (see :py:func:`~QgsLineString.interpolateM`). :param m: target m value :param use3DDistance: controls whether 2D or 3D distances between vertices should be used during interpolation. This option is only considered for lines with z values. :return: - ``True`` if a matching point was found, or ``False`` if it could not be found - x: interpolated x coordinate - y: interpolated y coordinate - z: interpolated z coordinate (for 3D lines only) - distanceFromStart: calculated distance from the start of the linestring to the located point .. seealso:: :py:func:`interpolateM` .. versionadded:: 3.40 %End protected: int compareToSameClass( const QgsAbstractGeometry *other ) const final; }; /************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgslinestring.h * * * * Do not edit manually ! Edit header and run scripts/sipify.py again * ************************************************************************/