TrainRegression-libsvm
otbcli_TrainRegression
TrainRegression (libsvm)
Learning
Train a classifier from multiple images to perform regression.
ParameterMultipleInput
io.il
Input Image List
A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.
False
ParameterFile
io.csv
Input CSV file
Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given
True
ParameterFile
io.imstat
Input XML image statistics file
Input XML file containing the mean and the standard deviation of the input images.
True
OutputFile
io.out
Output regression model
Output file containing the model estimated (.txt format).
ParameterNumber
io.mse
Mean Square Error
Mean square error computed with the validation predictors
0.0
False
ParameterNumber
sample.mt
Maximum training predictors
Maximum number of training predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.mv
Maximum validation predictors
Maximum number of validation predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.vtr
Training and validation sample ratio
Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).
0.5
False
ParameterSelection
classifier
Classifier to use for the training
Choice of the classifier to use for the training.
libsvm
0
False
ParameterSelection
classifier.libsvm.k
SVM Kernel Type
SVM Kernel Type.
linear
rbf
poly
sigmoid
0
False
ParameterSelection
classifier.libsvm.m
SVM Model Type
Type of SVM formulation.
epssvr
nusvr
0
False
ParameterNumber
classifier.libsvm.c
Cost parameter C
SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.
1
False
ParameterBoolean
classifier.libsvm.opt
Parameters optimization
SVM parameters optimization flag.
True
True
ParameterBoolean
classifier.libsvm.prob
Probability estimation
Probability estimation flag.
True
True
ParameterNumber
classifier.libsvm.eps
Epsilon
0.001
False
ParameterNumber
classifier.libsvm.nu
Nu
0.5
False
ParameterNumber
rand
set user defined seed
Set specific seed. with integer value.
0
True