# -*- coding: utf-8 -*- """ *************************************************************************** NearestNeighbourAnalysis.py --------------------- Date : August 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'August 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os import math import codecs from PyQt4.QtGui import QIcon from qgis.core import QgsFeatureRequest, QgsFeature, QgsDistanceArea from processing.core.GeoAlgorithm import GeoAlgorithm from processing.core.parameters import ParameterVector from processing.core.outputs import OutputHTML from processing.core.outputs import OutputNumber from processing.tools import dataobjects, vector pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] class NearestNeighbourAnalysis(GeoAlgorithm): POINTS = 'POINTS' OUTPUT = 'OUTPUT' OBSERVED_MD = 'OBSERVED_MD' EXPECTED_MD = 'EXPECTED_MD' NN_INDEX = 'NN_INDEX' POINT_COUNT = 'POINT_COUNT' Z_SCORE = 'Z_SCORE' def getIcon(self): return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png')) def defineCharacteristics(self): self.name, self.i18n_name = self.trAlgorithm('Nearest neighbour analysis') self.group, self.i18n_group = self.trAlgorithm('Vector analysis tools') self.addParameter(ParameterVector(self.POINTS, self.tr('Points'), [ParameterVector.VECTOR_TYPE_POINT])) self.addOutput(OutputHTML(self.OUTPUT, self.tr('Nearest neighbour'))) self.addOutput(OutputNumber(self.OBSERVED_MD, self.tr('Observed mean distance'))) self.addOutput(OutputNumber(self.EXPECTED_MD, self.tr('Expected mean distance'))) self.addOutput(OutputNumber(self.NN_INDEX, self.tr('Nearest neighbour index'))) self.addOutput(OutputNumber(self.POINT_COUNT, self.tr('Number of points'))) self.addOutput(OutputNumber(self.Z_SCORE, self.tr('Z-Score'))) def processAlgorithm(self, progress): layer = dataobjects.getObjectFromUri(self.getParameterValue(self.POINTS)) output = self.getOutputValue(self.OUTPUT) spatialIndex = vector.spatialindex(layer) neighbour = QgsFeature() distance = QgsDistanceArea() sumDist = 0.00 A = layer.extent() A = float(A.width() * A.height()) features = vector.features(layer) count = len(features) total = 100.0 / count for current, feat in enumerate(features): neighbourID = spatialIndex.nearestNeighbor( feat.geometry().asPoint(), 2)[1] request = QgsFeatureRequest().setFilterFid(neighbourID) neighbour = layer.getFeatures(request).next() sumDist += distance.measureLine(neighbour.geometry().asPoint(), feat.geometry().asPoint()) progress.setPercentage(int(current * total)) do = float(sumDist) / count de = float(0.5 / math.sqrt(count / A)) d = float(do / de) SE = float(0.26136 / math.sqrt(count ** 2 / A)) zscore = float((do - de) / SE) data = [] data.append('Observed mean distance: ' + unicode(do)) data.append('Expected mean distance: ' + unicode(de)) data.append('Nearest neighbour index: ' + unicode(d)) data.append('Number of points: ' + unicode(count)) data.append('Z-Score: ' + unicode(zscore)) self.createHTML(output, data) self.setOutputValue(self.OBSERVED_MD, float(data[0].split(': ')[1])) self.setOutputValue(self.EXPECTED_MD, float(data[1].split(': ')[1])) self.setOutputValue(self.NN_INDEX, float(data[2].split(': ')[1])) self.setOutputValue(self.POINT_COUNT, float(data[3].split(': ')[1])) self.setOutputValue(self.Z_SCORE, float(data[4].split(': ')[1])) def createHTML(self, outputFile, algData): f = codecs.open(outputFile, 'w', encoding='utf-8') f.write('') f.write('') for s in algData: f.write('

' + unicode(s) + '

') f.write('') f.close()