// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include #include #include #ifndef TRACE #define TRACE 0 #endif #if TRACE #include #endif // This work is based on: // Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997 // Michael Garland. Quadric-based polygonal surface simplification. 1999 // Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000 // Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003 // Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019 namespace meshopt { struct EdgeAdjacency { unsigned int *counts; unsigned int *offsets; unsigned int *data; }; static void buildEdgeAdjacency( EdgeAdjacency &adjacency, const unsigned int *indices, size_t index_count, size_t vertex_count, meshopt_Allocator &allocator ) { size_t face_count = index_count / 3; // allocate arrays adjacency.counts = allocator.allocate( vertex_count ); adjacency.offsets = allocator.allocate( vertex_count ); adjacency.data = allocator.allocate( index_count ); // fill edge counts memset( adjacency.counts, 0, vertex_count * sizeof( unsigned int ) ); for ( size_t i = 0; i < index_count; ++i ) { assert( indices[i] < vertex_count ); adjacency.counts[indices[i]]++; } // fill offset table unsigned int offset = 0; for ( size_t i = 0; i < vertex_count; ++i ) { adjacency.offsets[i] = offset; offset += adjacency.counts[i]; } assert( offset == index_count ); // fill edge data for ( size_t i = 0; i < face_count; ++i ) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; adjacency.data[adjacency.offsets[a]++] = b; adjacency.data[adjacency.offsets[b]++] = c; adjacency.data[adjacency.offsets[c]++] = a; } // fix offsets that have been disturbed by the previous pass for ( size_t i = 0; i < vertex_count; ++i ) { assert( adjacency.offsets[i] >= adjacency.counts[i] ); adjacency.offsets[i] -= adjacency.counts[i]; } } struct PositionHasher { const float *vertex_positions; size_t vertex_stride_float; size_t hash( unsigned int index ) const { // MurmurHash2 const unsigned int m = 0x5bd1e995; const int r = 24; unsigned int h = 0; const unsigned int *key = reinterpret_cast( vertex_positions + index * vertex_stride_float ); for ( size_t i = 0; i < 3; ++i ) { unsigned int k = key[i]; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } return h; } bool equal( unsigned int lhs, unsigned int rhs ) const { return memcmp( vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof( float ) * 3 ) == 0; } }; static size_t hashBuckets2( size_t count ) { size_t buckets = 1; while ( buckets < count ) buckets *= 2; return buckets; } template static T *hashLookup2( T *table, size_t buckets, const Hash &hash, const T &key, const T &empty ) { assert( buckets > 0 ); assert( ( buckets & ( buckets - 1 ) ) == 0 ); size_t hashmod = buckets - 1; size_t bucket = hash.hash( key ) & hashmod; for ( size_t probe = 0; probe <= hashmod; ++probe ) { T &item = table[bucket]; if ( item == empty ) return &item; if ( hash.equal( item, key ) ) return &item; // hash collision, quadratic probing bucket = ( bucket + probe + 1 ) & hashmod; } assert( false && "Hash table is full" ); // unreachable return 0; } static void buildPositionRemap( unsigned int *remap, unsigned int *wedge, const float *vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator &allocator ) { PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof( float )}; size_t table_size = hashBuckets2( vertex_count ); unsigned int *table = allocator.allocate( table_size ); memset( table, -1, table_size * sizeof( unsigned int ) ); // build forward remap: for each vertex, which other (canonical) vertex does it map to? // we use position equivalence for this, and remap vertices to other existing vertices for ( size_t i = 0; i < vertex_count; ++i ) { unsigned int index = unsigned( i ); unsigned int *entry = hashLookup2( table, table_size, hasher, index, ~0u ); if ( *entry == ~0u ) *entry = index; remap[index] = *entry; } // build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex? // entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i for ( size_t i = 0; i < vertex_count; ++i ) wedge[i] = unsigned( i ); for ( size_t i = 0; i < vertex_count; ++i ) if ( remap[i] != i ) { unsigned int r = remap[i]; wedge[i] = wedge[r]; wedge[r] = unsigned( i ); } } enum VertexKind { Kind_Manifold, // not on an attribute seam, not on any boundary Kind_Border, // not on an attribute seam, has exactly two open edges Kind_Seam, // on an attribute seam with exactly two attribute seam edges Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex Kind_Locked, // none of the above; these vertices can't move Kind_Count }; // manifold vertices can collapse onto anything // border/seam vertices can only be collapsed onto border/seam respectively // complex vertices can collapse onto complex/locked // a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex // for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore const unsigned char kCanCollapse[Kind_Count][Kind_Count] = { {1, 1, 1, 1, 1}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}, {0, 0, 0, 0, 0}, }; // if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge // note that for seam edges, the opposite edge isn't present in the attribute-based topology // but is present if you consider a position-only mesh variant const unsigned char kHasOpposite[Kind_Count][Kind_Count] = { {1, 1, 1, 0, 1}, {1, 0, 1, 0, 0}, {1, 1, 1, 0, 1}, {0, 0, 0, 0, 0}, {1, 0, 1, 0, 0}, }; static bool hasEdge( const EdgeAdjacency &adjacency, unsigned int a, unsigned int b ) { unsigned int count = adjacency.counts[a]; const unsigned int *data = adjacency.data + adjacency.offsets[a]; for ( size_t i = 0; i < count; ++i ) if ( data[i] == b ) return true; return false; } static unsigned int findWedgeEdge( const EdgeAdjacency &adjacency, const unsigned int *wedge, unsigned int a, unsigned int b ) { unsigned int v = a; do { if ( hasEdge( adjacency, v, b ) ) return v; v = wedge[v]; } while ( v != a ); return ~0u; } static size_t countOpenEdges( const EdgeAdjacency &adjacency, unsigned int vertex, unsigned int *last = 0 ) { size_t result = 0; unsigned int count = adjacency.counts[vertex]; const unsigned int *data = adjacency.data + adjacency.offsets[vertex]; for ( size_t i = 0; i < count; ++i ) if ( !hasEdge( adjacency, data[i], vertex ) ) { result++; if ( last ) *last = data[i]; } return result; } static void classifyVertices( unsigned char *result, unsigned int *loop, size_t vertex_count, const EdgeAdjacency &adjacency, const unsigned int *remap, const unsigned int *wedge ) { for ( size_t i = 0; i < vertex_count; ++i ) loop[i] = ~0u; #if TRACE size_t lockedstats[4] = {}; #define TRACELOCKED(i) lockedstats[i]++; #else #define TRACELOCKED(i) (void)0 #endif for ( size_t i = 0; i < vertex_count; ++i ) { if ( remap[i] == i ) { if ( wedge[i] == i ) { // no attribute seam, need to check if it's manifold unsigned int v = 0; size_t edges = countOpenEdges( adjacency, unsigned( i ), &v ); // note: we classify any vertices with no open edges as manifold // this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold // it's unclear if this is a problem in practice // also note that we classify vertices as border if they have *one* open edge, not two // this is because we only have half-edges - so a border vertex would have one incoming and one outgoing edge if ( edges == 0 ) { result[i] = Kind_Manifold; } else if ( edges == 1 ) { result[i] = Kind_Border; loop[i] = v; } else { result[i] = Kind_Locked; TRACELOCKED( 0 ); } } else if ( wedge[wedge[i]] == i ) { // attribute seam; need to distinguish between Seam and Locked unsigned int a = 0; size_t a_count = countOpenEdges( adjacency, unsigned( i ), &a ); unsigned int b = 0; size_t b_count = countOpenEdges( adjacency, wedge[i], &b ); // seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap if ( a_count == 1 && b_count == 1 ) { unsigned int ao = findWedgeEdge( adjacency, wedge, a, wedge[i] ); unsigned int bo = findWedgeEdge( adjacency, wedge, b, unsigned( i ) ); if ( ao != ~0u && bo != ~0u ) { result[i] = Kind_Seam; loop[i] = a; loop[wedge[i]] = b; } else { result[i] = Kind_Locked; TRACELOCKED( 1 ); } } else { result[i] = Kind_Locked; TRACELOCKED( 2 ); } } else { // more than one vertex maps to this one; we don't have classification available result[i] = Kind_Locked; TRACELOCKED( 3 ); } } else { assert( remap[i] < i ); result[i] = result[remap[i]]; } } #if TRACE printf( "locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n", int( lockedstats[0] ), int( lockedstats[1] ), int( lockedstats[2] ), int( lockedstats[3] ) ); #endif } struct Vector3 { float x, y, z; }; static void rescalePositions( Vector3 *result, const float *vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride ) { size_t vertex_stride_float = vertex_positions_stride / sizeof( float ); float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; for ( size_t i = 0; i < vertex_count; ++i ) { const float *v = vertex_positions_data + i * vertex_stride_float; result[i].x = v[0]; result[i].y = v[1]; result[i].z = v[2]; for ( int j = 0; j < 3; ++j ) { float vj = v[j]; minv[j] = minv[j] > vj ? vj : minv[j]; maxv[j] = maxv[j] < vj ? vj : maxv[j]; } } float extent = 0.f; extent = ( maxv[0] - minv[0] ) < extent ? extent : ( maxv[0] - minv[0] ); extent = ( maxv[1] - minv[1] ) < extent ? extent : ( maxv[1] - minv[1] ); extent = ( maxv[2] - minv[2] ) < extent ? extent : ( maxv[2] - minv[2] ); float scale = extent == 0 ? 0.f : 1.f / extent; for ( size_t i = 0; i < vertex_count; ++i ) { result[i].x = ( result[i].x - minv[0] ) * scale; result[i].y = ( result[i].y - minv[1] ) * scale; result[i].z = ( result[i].z - minv[2] ) * scale; } } struct Quadric { float a00, a11, a22; float a10, a20, a21; float b0, b1, b2, c; float w; }; struct Collapse { unsigned int v0; unsigned int v1; union { unsigned int bidi; float error; unsigned int errorui; }; }; static float normalize( Vector3 &v ) { float length = sqrtf( v.x * v.x + v.y * v.y + v.z * v.z ); if ( length > 0 ) { v.x /= length; v.y /= length; v.z /= length; } return length; } static void quadricAdd( Quadric &Q, const Quadric &R ) { Q.a00 += R.a00; Q.a11 += R.a11; Q.a22 += R.a22; Q.a10 += R.a10; Q.a20 += R.a20; Q.a21 += R.a21; Q.b0 += R.b0; Q.b1 += R.b1; Q.b2 += R.b2; Q.c += R.c; Q.w += R.w; } static float quadricError( const Quadric &Q, const Vector3 &v ) { float rx = Q.b0; float ry = Q.b1; float rz = Q.b2; rx += Q.a10 * v.y; ry += Q.a21 * v.z; rz += Q.a20 * v.x; rx *= 2; ry *= 2; rz *= 2; rx += Q.a00 * v.x; ry += Q.a11 * v.y; rz += Q.a22 * v.z; float r = Q.c; r += rx * v.x; r += ry * v.y; r += rz * v.z; float s = Q.w == 0.f ? 0.f : 1.f / Q.w; return fabsf( r ) * s; } static void quadricFromPlane( Quadric &Q, float a, float b, float c, float d, float w ) { float aw = a * w; float bw = b * w; float cw = c * w; float dw = d * w; Q.a00 = a * aw; Q.a11 = b * bw; Q.a22 = c * cw; Q.a10 = a * bw; Q.a20 = a * cw; Q.a21 = b * cw; Q.b0 = a * dw; Q.b1 = b * dw; Q.b2 = c * dw; Q.c = d * dw; Q.w = w; } static void quadricFromPoint( Quadric &Q, float x, float y, float z, float w ) { // we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric Q.a00 = w; Q.a11 = w; Q.a22 = w; Q.a10 = 0.f; Q.a20 = 0.f; Q.a21 = 0.f; Q.b0 = -2.f * x * w; Q.b1 = -2.f * y * w; Q.b2 = -2.f * z * w; Q.c = ( x * x + y * y + z * z ) * w; Q.w = w; } static void quadricFromTriangle( Quadric &Q, const Vector3 &p0, const Vector3 &p1, const Vector3 &p2, float weight ) { Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; // normal = cross(p1 - p0, p2 - p0) Vector3 normal = {p10.y *p20.z - p10.z * p20.y, p10.z *p20.x - p10.x * p20.z, p10.x *p20.y - p10.y * p20.x}; float area = normalize( normal ); float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z; // we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes quadricFromPlane( Q, normal.x, normal.y, normal.z, -distance, sqrtf( area ) * weight ); } static void quadricFromTriangleEdge( Quadric &Q, const Vector3 &p0, const Vector3 &p1, const Vector3 &p2, float weight ) { Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; float length = normalize( p10 ); // p20p = length of projection of p2-p0 onto normalize(p1 - p0) Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z; // normal = altitude of triangle from point p2 onto edge p1-p0 Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p}; normalize( normal ); float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z; // note: the weight is scaled linearly with edge length; this has to match the triangle weight quadricFromPlane( Q, normal.x, normal.y, normal.z, -distance, length * weight ); } static void fillFaceQuadrics( Quadric *vertex_quadrics, const unsigned int *indices, size_t index_count, const Vector3 *vertex_positions, const unsigned int *remap ) { for ( size_t i = 0; i < index_count; i += 3 ) { unsigned int i0 = indices[i + 0]; unsigned int i1 = indices[i + 1]; unsigned int i2 = indices[i + 2]; Quadric Q; quadricFromTriangle( Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f ); quadricAdd( vertex_quadrics[remap[i0]], Q ); quadricAdd( vertex_quadrics[remap[i1]], Q ); quadricAdd( vertex_quadrics[remap[i2]], Q ); } } static void fillEdgeQuadrics( Quadric *vertex_quadrics, const unsigned int *indices, size_t index_count, const Vector3 *vertex_positions, const unsigned int *remap, const unsigned char *vertex_kind, const unsigned int *loop ) { for ( size_t i = 0; i < index_count; i += 3 ) { static const int next[3] = {1, 2, 0}; for ( int e = 0; e < 3; ++e ) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; // check that i0 and i1 are border/seam and are on the same edge loop // loop[] tracks half edges so we only need to check i0->i1 if ( k0 != k1 || ( k0 != Kind_Border && k0 != Kind_Seam ) || loop[i0] != i1 ) continue; unsigned int i2 = indices[i + next[next[e]]]; // we try hard to maintain border edge geometry; seam edges can move more freely // due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical const float kEdgeWeightSeam = 1.f; const float kEdgeWeightBorder = 10.f; float edgeWeight = ( k0 == Kind_Seam ) ? kEdgeWeightSeam : kEdgeWeightBorder; Quadric Q; quadricFromTriangleEdge( Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight ); quadricAdd( vertex_quadrics[remap[i0]], Q ); quadricAdd( vertex_quadrics[remap[i1]], Q ); } } } static size_t pickEdgeCollapses( Collapse *collapses, const unsigned int *indices, size_t index_count, const unsigned int *remap, const unsigned char *vertex_kind, const unsigned int *loop ) { size_t collapse_count = 0; for ( size_t i = 0; i < index_count; i += 3 ) { static const int next[3] = {1, 2, 0}; for ( int e = 0; e < 3; ++e ) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; // this can happen either when input has a zero-length edge, or when we perform collapses for complex // topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them // we leave edges like this alone since they may be important for preserving mesh integrity if ( remap[i0] == remap[i1] ) continue; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; // the edge has to be collapsible in at least one direction if ( !( kCanCollapse[k0][k1] | kCanCollapse[k1][k0] ) ) continue; // manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges if ( kHasOpposite[k0][k1] && remap[i1] > remap[i0] ) continue; // two vertices are on a border or a seam, but there's no direct edge between them // this indicates that they belong to two different edge loops and we should not collapse this edge // loop[] tracks half edges so we only need to check i0->i1 if ( k0 == k1 && ( k0 == Kind_Border || k0 == Kind_Seam ) && loop[i0] != i1 ) continue; // edge can be collapsed in either direction - we will pick the one with minimum error // note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional if ( kCanCollapse[k0][k1] & kCanCollapse[k1][k0] ) { Collapse c = {i0, i1, {/* bidi= */ 1}}; collapses[collapse_count++] = c; } else { // edge can only be collapsed in one direction unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1; unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0; Collapse c = {e0, e1, {/* bidi= */ 0}}; collapses[collapse_count++] = c; } } } return collapse_count; } static void rankEdgeCollapses( Collapse *collapses, size_t collapse_count, const Vector3 *vertex_positions, const Quadric *vertex_quadrics, const unsigned int *remap ) { for ( size_t i = 0; i < collapse_count; ++i ) { Collapse &c = collapses[i]; unsigned int i0 = c.v0; unsigned int i1 = c.v1; // most edges are bidirectional which means we need to evaluate errors for two collapses // to keep this code branchless we just use the same edge for unidirectional edges unsigned int j0 = c.bidi ? i1 : i0; unsigned int j1 = c.bidi ? i0 : i1; const Quadric &qi = vertex_quadrics[remap[i0]]; const Quadric &qj = vertex_quadrics[remap[j0]]; float ei = quadricError( qi, vertex_positions[i1] ); float ej = quadricError( qj, vertex_positions[j1] ); // pick edge direction with minimal error c.v0 = ei <= ej ? i0 : j0; c.v1 = ei <= ej ? i1 : j1; c.error = ei <= ej ? ei : ej; } } #if TRACE > 1 static void dumpEdgeCollapses( const Collapse *collapses, size_t collapse_count, const unsigned char *vertex_kind ) { size_t ckinds[Kind_Count][Kind_Count] = {}; float cerrors[Kind_Count][Kind_Count] = {}; for ( int k0 = 0; k0 < Kind_Count; ++k0 ) for ( int k1 = 0; k1 < Kind_Count; ++k1 ) cerrors[k0][k1] = FLT_MAX; for ( size_t i = 0; i < collapse_count; ++i ) { unsigned int i0 = collapses[i].v0; unsigned int i1 = collapses[i].v1; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; ckinds[k0][k1]++; cerrors[k0][k1] = ( collapses[i].error < cerrors[k0][k1] ) ? collapses[i].error : cerrors[k0][k1]; } for ( int k0 = 0; k0 < Kind_Count; ++k0 ) for ( int k1 = 0; k1 < Kind_Count; ++k1 ) if ( ckinds[k0][k1] ) printf( "collapses %d -> %d: %d, min error %e\n", k0, k1, int( ckinds[k0][k1] ), cerrors[k0][k1] ); } static void dumpLockedCollapses( const unsigned int *indices, size_t index_count, const unsigned char *vertex_kind ) { size_t locked_collapses[Kind_Count][Kind_Count] = {}; for ( size_t i = 0; i < index_count; i += 3 ) { static const int next[3] = {1, 2, 0}; for ( int e = 0; e < 3; ++e ) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0]; } } for ( int k0 = 0; k0 < Kind_Count; ++k0 ) for ( int k1 = 0; k1 < Kind_Count; ++k1 ) if ( locked_collapses[k0][k1] ) printf( "locked collapses %d -> %d: %d\n", k0, k1, int( locked_collapses[k0][k1] ) ); } #endif static void sortEdgeCollapses( unsigned int *sort_order, const Collapse *collapses, size_t collapse_count ) { const int sort_bits = 11; // fill histogram for counting sort unsigned int histogram[1 << sort_bits]; memset( histogram, 0, sizeof( histogram ) ); for ( size_t i = 0; i < collapse_count; ++i ) { // skip sign bit since error is non-negative unsigned int key = ( collapses[i].errorui << 1 ) >> ( 32 - sort_bits ); histogram[key]++; } // compute offsets based on histogram data size_t histogram_sum = 0; for ( size_t i = 0; i < 1 << sort_bits; ++i ) { size_t count = histogram[i]; histogram[i] = unsigned( histogram_sum ); histogram_sum += count; } assert( histogram_sum == collapse_count ); // compute sort order based on offsets for ( size_t i = 0; i < collapse_count; ++i ) { // skip sign bit since error is non-negative unsigned int key = ( collapses[i].errorui << 1 ) >> ( 32 - sort_bits ); sort_order[histogram[key]++] = unsigned( i ); } } static size_t performEdgeCollapses( unsigned int *collapse_remap, unsigned char *collapse_locked, Quadric *vertex_quadrics, const Collapse *collapses, size_t collapse_count, const unsigned int *collapse_order, const unsigned int *remap, const unsigned int *wedge, const unsigned char *vertex_kind, size_t triangle_collapse_goal, float error_goal, float error_limit ) { size_t edge_collapses = 0; size_t triangle_collapses = 0; for ( size_t i = 0; i < collapse_count; ++i ) { const Collapse &c = collapses[collapse_order[i]]; if ( c.error > error_limit ) break; if ( c.error > error_goal && triangle_collapses > triangle_collapse_goal / 10 ) break; if ( triangle_collapses >= triangle_collapse_goal ) break; unsigned int i0 = c.v0; unsigned int i1 = c.v1; unsigned int r0 = remap[i0]; unsigned int r1 = remap[i1]; // we don't collapse vertices that had source or target vertex involved in a collapse // it's important to not move the vertices twice since it complicates the tracking/remapping logic // it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass if ( collapse_locked[r0] | collapse_locked[r1] ) continue; assert( collapse_remap[r0] == r0 ); assert( collapse_remap[r1] == r1 ); quadricAdd( vertex_quadrics[r1], vertex_quadrics[r0] ); if ( vertex_kind[i0] == Kind_Complex ) { unsigned int v = i0; do { collapse_remap[v] = r1; v = wedge[v]; } while ( v != i0 ); } else if ( vertex_kind[i0] == Kind_Seam ) { // remap v0 to v1 and seam pair of v0 to seam pair of v1 unsigned int s0 = wedge[i0]; unsigned int s1 = wedge[i1]; assert( s0 != i0 && s1 != i1 ); assert( wedge[s0] == i0 && wedge[s1] == i1 ); collapse_remap[i0] = i1; collapse_remap[s0] = s1; } else { assert( wedge[i0] == i0 ); collapse_remap[i0] = i1; } collapse_locked[r0] = 1; collapse_locked[r1] = 1; // border edges collapse 1 triangle, other edges collapse 2 or more triangle_collapses += ( vertex_kind[i0] == Kind_Border ) ? 1 : 2; edge_collapses++; } return edge_collapses; } static size_t remapIndexBuffer( unsigned int *indices, size_t index_count, const unsigned int *collapse_remap ) { size_t write = 0; for ( size_t i = 0; i < index_count; i += 3 ) { unsigned int v0 = collapse_remap[indices[i + 0]]; unsigned int v1 = collapse_remap[indices[i + 1]]; unsigned int v2 = collapse_remap[indices[i + 2]]; // we never move the vertex twice during a single pass assert( collapse_remap[v0] == v0 ); assert( collapse_remap[v1] == v1 ); assert( collapse_remap[v2] == v2 ); if ( v0 != v1 && v0 != v2 && v1 != v2 ) { indices[write + 0] = v0; indices[write + 1] = v1; indices[write + 2] = v2; write += 3; } } return write; } static void remapEdgeLoops( unsigned int *loop, size_t vertex_count, const unsigned int *collapse_remap ) { for ( size_t i = 0; i < vertex_count; ++i ) { if ( loop[i] != ~0u ) { unsigned int l = loop[i]; unsigned int r = collapse_remap[l]; // i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes loop[i] = ( i == r ) ? loop[l] : r; } } } struct CellHasher { const unsigned int *vertex_ids; size_t hash( unsigned int i ) const { unsigned int h = vertex_ids[i]; // MurmurHash2 finalizer h ^= h >> 13; h *= 0x5bd1e995; h ^= h >> 15; return h; } bool equal( unsigned int lhs, unsigned int rhs ) const { return vertex_ids[lhs] == vertex_ids[rhs]; } }; struct IdHasher { size_t hash( unsigned int id ) const { unsigned int h = id; // MurmurHash2 finalizer h ^= h >> 13; h *= 0x5bd1e995; h ^= h >> 15; return h; } bool equal( unsigned int lhs, unsigned int rhs ) const { return lhs == rhs; } }; struct TriangleHasher { unsigned int *indices; size_t hash( unsigned int i ) const { const unsigned int *tri = indices + i * 3; // Optimized Spatial Hashing for Collision Detection of Deformable Objects return ( tri[0] * 73856093 ) ^ ( tri[1] * 19349663 ) ^ ( tri[2] * 83492791 ); } bool equal( unsigned int lhs, unsigned int rhs ) const { const unsigned int *lt = indices + lhs * 3; const unsigned int *rt = indices + rhs * 3; return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2]; } }; static void computeVertexIds( unsigned int *vertex_ids, const Vector3 *vertex_positions, size_t vertex_count, int grid_size ) { assert( grid_size >= 1 && grid_size <= 1024 ); float cell_scale = float( grid_size - 1 ); for ( size_t i = 0; i < vertex_count; ++i ) { const Vector3 &v = vertex_positions[i]; int xi = int( v.x * cell_scale + 0.5f ); int yi = int( v.y * cell_scale + 0.5f ); int zi = int( v.z * cell_scale + 0.5f ); vertex_ids[i] = ( xi << 20 ) | ( yi << 10 ) | zi; } } static size_t countTriangles( const unsigned int *vertex_ids, const unsigned int *indices, size_t index_count ) { size_t result = 0; for ( size_t i = 0; i < index_count; i += 3 ) { unsigned int id0 = vertex_ids[indices[i + 0]]; unsigned int id1 = vertex_ids[indices[i + 1]]; unsigned int id2 = vertex_ids[indices[i + 2]]; result += ( id0 != id1 ) & ( id0 != id2 ) & ( id1 != id2 ); } return result; } static size_t fillVertexCells( unsigned int *table, size_t table_size, unsigned int *vertex_cells, const unsigned int *vertex_ids, size_t vertex_count ) { CellHasher hasher = {vertex_ids}; memset( table, -1, table_size * sizeof( unsigned int ) ); size_t result = 0; for ( size_t i = 0; i < vertex_count; ++i ) { unsigned int *entry = hashLookup2( table, table_size, hasher, unsigned( i ), ~0u ); if ( *entry == ~0u ) { *entry = unsigned( i ); vertex_cells[i] = unsigned( result++ ); } else { vertex_cells[i] = vertex_cells[*entry]; } } return result; } static size_t countVertexCells( unsigned int *table, size_t table_size, const unsigned int *vertex_ids, size_t vertex_count ) { IdHasher hasher; memset( table, -1, table_size * sizeof( unsigned int ) ); size_t result = 0; for ( size_t i = 0; i < vertex_count; ++i ) { unsigned int id = vertex_ids[i]; unsigned int *entry = hashLookup2( table, table_size, hasher, id, ~0u ); result += ( *entry == ~0u ); *entry = id; } return result; } static void fillCellQuadrics( Quadric *cell_quadrics, const unsigned int *indices, size_t index_count, const Vector3 *vertex_positions, const unsigned int *vertex_cells ) { for ( size_t i = 0; i < index_count; i += 3 ) { unsigned int i0 = indices[i + 0]; unsigned int i1 = indices[i + 1]; unsigned int i2 = indices[i + 2]; unsigned int c0 = vertex_cells[i0]; unsigned int c1 = vertex_cells[i1]; unsigned int c2 = vertex_cells[i2]; bool single_cell = ( c0 == c1 ) & ( c0 == c2 ); Quadric Q; quadricFromTriangle( Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f ); if ( single_cell ) { quadricAdd( cell_quadrics[c0], Q ); } else { quadricAdd( cell_quadrics[c0], Q ); quadricAdd( cell_quadrics[c1], Q ); quadricAdd( cell_quadrics[c2], Q ); } } } static void fillCellQuadrics( Quadric *cell_quadrics, const Vector3 *vertex_positions, size_t vertex_count, const unsigned int *vertex_cells ) { for ( size_t i = 0; i < vertex_count; ++i ) { unsigned int c = vertex_cells[i]; const Vector3 &v = vertex_positions[i]; Quadric Q; quadricFromPoint( Q, v.x, v.y, v.z, 1.f ); quadricAdd( cell_quadrics[c], Q ); } } static void fillCellRemap( unsigned int *cell_remap, float *cell_errors, size_t cell_count, const unsigned int *vertex_cells, const Quadric *cell_quadrics, const Vector3 *vertex_positions, size_t vertex_count ) { memset( cell_remap, -1, cell_count * sizeof( unsigned int ) ); for ( size_t i = 0; i < vertex_count; ++i ) { unsigned int cell = vertex_cells[i]; float error = quadricError( cell_quadrics[cell], vertex_positions[i] ); if ( cell_remap[cell] == ~0u || cell_errors[cell] > error ) { cell_remap[cell] = unsigned( i ); cell_errors[cell] = error; } } } static size_t filterTriangles( unsigned int *destination, unsigned int *tritable, size_t tritable_size, const unsigned int *indices, size_t index_count, const unsigned int *vertex_cells, const unsigned int *cell_remap ) { TriangleHasher hasher = {destination}; memset( tritable, -1, tritable_size * sizeof( unsigned int ) ); size_t result = 0; for ( size_t i = 0; i < index_count; i += 3 ) { unsigned int c0 = vertex_cells[indices[i + 0]]; unsigned int c1 = vertex_cells[indices[i + 1]]; unsigned int c2 = vertex_cells[indices[i + 2]]; if ( c0 != c1 && c0 != c2 && c1 != c2 ) { unsigned int a = cell_remap[c0]; unsigned int b = cell_remap[c1]; unsigned int c = cell_remap[c2]; if ( b < a && b < c ) { unsigned int t = a; a = b, b = c, c = t; } else if ( c < a && c < b ) { unsigned int t = c; c = b, b = a, a = t; } destination[result * 3 + 0] = a; destination[result * 3 + 1] = b; destination[result * 3 + 2] = c; unsigned int *entry = hashLookup2( tritable, tritable_size, hasher, unsigned( result ), ~0u ); if ( *entry == ~0u ) *entry = unsigned( result++ ); } } return result * 3; } static float interpolate( float y, float x0, float y0, float x1, float y1, float x2, float y2 ) { // three point interpolation from "revenge of interpolation search" paper float num = ( y1 - y ) * ( x1 - x2 ) * ( x1 - x0 ) * ( y2 - y0 ); float den = ( y2 - y ) * ( x1 - x2 ) * ( y0 - y1 ) + ( y0 - y ) * ( x1 - x0 ) * ( y1 - y2 ); return x1 + num / den; } } // namespace meshopt #if TRACE unsigned char *meshopt_simplifyDebugKind = 0; unsigned int *meshopt_simplifyDebugLoop = 0; #endif size_t meshopt_simplify( unsigned int *destination, const unsigned int *indices, size_t index_count, const float *vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error ) { using namespace meshopt; assert( index_count % 3 == 0 ); assert( vertex_positions_stride > 0 && vertex_positions_stride <= 256 ); assert( vertex_positions_stride % sizeof( float ) == 0 ); assert( target_index_count <= index_count ); meshopt_Allocator allocator; unsigned int *result = destination; // build adjacency information EdgeAdjacency adjacency = {}; buildEdgeAdjacency( adjacency, indices, index_count, vertex_count, allocator ); // build position remap that maps each vertex to the one with identical position unsigned int *remap = allocator.allocate( vertex_count ); unsigned int *wedge = allocator.allocate( vertex_count ); buildPositionRemap( remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, allocator ); // classify vertices; vertex kind determines collapse rules, see kCanCollapse unsigned char *vertex_kind = allocator.allocate( vertex_count ); unsigned int *loop = allocator.allocate( vertex_count ); classifyVertices( vertex_kind, loop, vertex_count, adjacency, remap, wedge ); #if TRACE size_t unique_positions = 0; for ( size_t i = 0; i < vertex_count; ++i ) unique_positions += remap[i] == i; printf( "position remap: %d vertices => %d positions\n", int( vertex_count ), int( unique_positions ) ); size_t kinds[Kind_Count] = {}; for ( size_t i = 0; i < vertex_count; ++i ) kinds[vertex_kind[i]] += remap[i] == i; printf( "kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n", int( kinds[Kind_Manifold] ), int( kinds[Kind_Border] ), int( kinds[Kind_Seam] ), int( kinds[Kind_Complex] ), int( kinds[Kind_Locked] ) ); #endif Vector3 *vertex_positions = allocator.allocate( vertex_count ); rescalePositions( vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride ); Quadric *vertex_quadrics = allocator.allocate( vertex_count ); memset( vertex_quadrics, 0, vertex_count * sizeof( Quadric ) ); fillFaceQuadrics( vertex_quadrics, indices, index_count, vertex_positions, remap ); fillEdgeQuadrics( vertex_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop ); if ( result != indices ) memcpy( result, indices, index_count * sizeof( unsigned int ) ); #if TRACE size_t pass_count = 0; float worst_error = 0; #endif Collapse *edge_collapses = allocator.allocate( index_count ); unsigned int *collapse_order = allocator.allocate( index_count ); unsigned int *collapse_remap = allocator.allocate( vertex_count ); unsigned char *collapse_locked = allocator.allocate( vertex_count ); size_t result_count = index_count; // target_error input is linear; we need to adjust it to match quadricError units float error_limit = target_error * target_error; while ( result_count > target_index_count ) { size_t edge_collapse_count = pickEdgeCollapses( edge_collapses, result, result_count, remap, vertex_kind, loop ); // no edges can be collapsed any more due to topology restrictions if ( edge_collapse_count == 0 ) break; rankEdgeCollapses( edge_collapses, edge_collapse_count, vertex_positions, vertex_quadrics, remap ); #if TRACE > 1 dumpEdgeCollapses( edge_collapses, edge_collapse_count, vertex_kind ); #endif sortEdgeCollapses( collapse_order, edge_collapses, edge_collapse_count ); // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses size_t triangle_collapse_goal = ( result_count - target_index_count ) / 3; size_t edge_collapse_goal = triangle_collapse_goal / 2; // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked // as they will share vertices with other successfull collapses, we need to increase the acceptable error by this factor const float kPassErrorBound = 1.5f; float error_goal = edge_collapse_goal < edge_collapse_count ? edge_collapses[collapse_order[edge_collapse_goal]].error * kPassErrorBound : FLT_MAX; for ( size_t i = 0; i < vertex_count; ++i ) collapse_remap[i] = unsigned( i ); memset( collapse_locked, 0, vertex_count ); size_t collapses = performEdgeCollapses( collapse_remap, collapse_locked, vertex_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, triangle_collapse_goal, error_goal, error_limit ); // no edges can be collapsed any more due to hitting the error limit or triangle collapse limit if ( collapses == 0 ) break; remapEdgeLoops( loop, vertex_count, collapse_remap ); size_t new_count = remapIndexBuffer( result, result_count, collapse_remap ); assert( new_count < result_count ); #if TRACE float pass_error = 0.f; for ( size_t i = 0; i < edge_collapse_count; ++i ) { Collapse &c = edge_collapses[collapse_order[i]]; if ( collapse_remap[c.v0] == c.v1 ) pass_error = c.error; } pass_count++; worst_error = ( worst_error < pass_error ) ? pass_error : worst_error; printf( "pass %d: triangles: %d -> %d, collapses: %d/%d (goal: %d), error: %e (limit %e goal %e)\n", int( pass_count ), int( result_count / 3 ), int( new_count / 3 ), int( collapses ), int( edge_collapse_count ), int( edge_collapse_goal ), pass_error, error_limit, error_goal ); #endif result_count = new_count; } #if TRACE printf( "passes: %d, worst error: %e\n", int( pass_count ), worst_error ); #endif #if TRACE > 1 dumpLockedCollapses( result, result_count, vertex_kind ); #endif #if TRACE if ( meshopt_simplifyDebugKind ) memcpy( meshopt_simplifyDebugKind, vertex_kind, vertex_count ); if ( meshopt_simplifyDebugLoop ) memcpy( meshopt_simplifyDebugLoop, loop, vertex_count * sizeof( unsigned int ) ); #endif return result_count; } size_t meshopt_simplifySloppy( unsigned int *destination, const unsigned int *indices, size_t index_count, const float *vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count ) { using namespace meshopt; assert( index_count % 3 == 0 ); assert( vertex_positions_stride > 0 && vertex_positions_stride <= 256 ); assert( vertex_positions_stride % sizeof( float ) == 0 ); assert( target_index_count <= index_count ); // we expect to get ~2 triangles/vertex in the output size_t target_cell_count = target_index_count / 6; if ( target_cell_count == 0 ) return 0; meshopt_Allocator allocator; Vector3 *vertex_positions = allocator.allocate( vertex_count ); rescalePositions( vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride ); // find the optimal grid size using guided binary search #if TRACE printf( "source: %d vertices, %d triangles\n", int( vertex_count ), int( index_count / 3 ) ); printf( "target: %d cells, %d triangles\n", int( target_cell_count ), int( target_index_count / 3 ) ); #endif unsigned int *vertex_ids = allocator.allocate( vertex_count ); const int kInterpolationPasses = 5; // invariant: # of triangles in min_grid <= target_count int min_grid = 0; int max_grid = 1025; size_t min_triangles = 0; size_t max_triangles = index_count / 3; // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... int next_grid_size = int( sqrtf( float( target_cell_count ) ) + 0.5f ); for ( int pass = 0; pass < 10 + kInterpolationPasses; ++pass ) { assert( min_triangles < target_index_count / 3 ); assert( max_grid - min_grid > 1 ); // we clamp the prediction of the grid size to make sure that the search converges int grid_size = next_grid_size; grid_size = ( grid_size <= min_grid ) ? min_grid + 1 : ( grid_size >= max_grid ) ? max_grid - 1 : grid_size; computeVertexIds( vertex_ids, vertex_positions, vertex_count, grid_size ); size_t triangles = countTriangles( vertex_ids, indices, index_count ); #if TRACE printf( "pass %d (%s): grid size %d, triangles %d, %s\n", pass, ( pass == 0 ) ? "guess" : ( pass <= kInterpolationPasses ) ? "lerp" : "binary", grid_size, int( triangles ), ( triangles <= target_index_count / 3 ) ? "under" : "over" ); #endif float tip = interpolate( float( target_index_count / 3 ), float( min_grid ), float( min_triangles ), float( grid_size ), float( triangles ), float( max_grid ), float( max_triangles ) ); if ( triangles <= target_index_count / 3 ) { min_grid = grid_size; min_triangles = triangles; } else { max_grid = grid_size; max_triangles = triangles; } if ( triangles == target_index_count / 3 || max_grid - min_grid <= 1 ) break; // we start by using interpolation search - it usually converges faster // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) next_grid_size = ( pass < kInterpolationPasses ) ? int( tip + 0.5f ) : ( min_grid + max_grid ) / 2; } if ( min_triangles == 0 ) return 0; // build vertex->cell association by mapping all vertices with the same quantized position to the same cell size_t table_size = hashBuckets2( vertex_count ); unsigned int *table = allocator.allocate( table_size ); unsigned int *vertex_cells = allocator.allocate( vertex_count ); computeVertexIds( vertex_ids, vertex_positions, vertex_count, min_grid ); size_t cell_count = fillVertexCells( table, table_size, vertex_cells, vertex_ids, vertex_count ); // build a quadric for each target cell Quadric *cell_quadrics = allocator.allocate( cell_count ); memset( cell_quadrics, 0, cell_count * sizeof( Quadric ) ); fillCellQuadrics( cell_quadrics, indices, index_count, vertex_positions, vertex_cells ); // for each target cell, find the vertex with the minimal error unsigned int *cell_remap = allocator.allocate( cell_count ); float *cell_errors = allocator.allocate( cell_count ); fillCellRemap( cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count ); // collapse triangles! // note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :( size_t tritable_size = hashBuckets2( min_triangles ); unsigned int *tritable = allocator.allocate( tritable_size ); size_t write = filterTriangles( destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap ); assert( write <= target_index_count ); #if TRACE printf( "result: %d cells, %d triangles (%d unfiltered)\n", int( cell_count ), int( write / 3 ), int( min_triangles ) ); #endif return write; } size_t meshopt_simplifyPoints( unsigned int *destination, const float *vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count ) { using namespace meshopt; assert( vertex_positions_stride > 0 && vertex_positions_stride <= 256 ); assert( vertex_positions_stride % sizeof( float ) == 0 ); assert( target_vertex_count <= vertex_count ); size_t target_cell_count = target_vertex_count; if ( target_cell_count == 0 ) return 0; meshopt_Allocator allocator; Vector3 *vertex_positions = allocator.allocate( vertex_count ); rescalePositions( vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride ); // find the optimal grid size using guided binary search #if TRACE printf( "source: %d vertices\n", int( vertex_count ) ); printf( "target: %d cells\n", int( target_cell_count ) ); #endif unsigned int *vertex_ids = allocator.allocate( vertex_count ); size_t table_size = hashBuckets2( vertex_count ); unsigned int *table = allocator.allocate( table_size ); const int kInterpolationPasses = 5; // invariant: # of vertices in min_grid <= target_count int min_grid = 0; int max_grid = 1025; size_t min_vertices = 0; size_t max_vertices = vertex_count; // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... int next_grid_size = int( sqrtf( float( target_cell_count ) ) + 0.5f ); for ( int pass = 0; pass < 10 + kInterpolationPasses; ++pass ) { assert( min_vertices < target_vertex_count ); assert( max_grid - min_grid > 1 ); // we clamp the prediction of the grid size to make sure that the search converges int grid_size = next_grid_size; grid_size = ( grid_size <= min_grid ) ? min_grid + 1 : ( grid_size >= max_grid ) ? max_grid - 1 : grid_size; computeVertexIds( vertex_ids, vertex_positions, vertex_count, grid_size ); size_t vertices = countVertexCells( table, table_size, vertex_ids, vertex_count ); #if TRACE printf( "pass %d (%s): grid size %d, vertices %d, %s\n", pass, ( pass == 0 ) ? "guess" : ( pass <= kInterpolationPasses ) ? "lerp" : "binary", grid_size, int( vertices ), ( vertices <= target_vertex_count ) ? "under" : "over" ); #endif float tip = interpolate( float( target_vertex_count ), float( min_grid ), float( min_vertices ), float( grid_size ), float( vertices ), float( max_grid ), float( max_vertices ) ); if ( vertices <= target_vertex_count ) { min_grid = grid_size; min_vertices = vertices; } else { max_grid = grid_size; max_vertices = vertices; } if ( vertices == target_vertex_count || max_grid - min_grid <= 1 ) break; // we start by using interpolation search - it usually converges faster // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) next_grid_size = ( pass < kInterpolationPasses ) ? int( tip + 0.5f ) : ( min_grid + max_grid ) / 2; } if ( min_vertices == 0 ) return 0; // build vertex->cell association by mapping all vertices with the same quantized position to the same cell unsigned int *vertex_cells = allocator.allocate( vertex_count ); computeVertexIds( vertex_ids, vertex_positions, vertex_count, min_grid ); size_t cell_count = fillVertexCells( table, table_size, vertex_cells, vertex_ids, vertex_count ); // build a quadric for each target cell Quadric *cell_quadrics = allocator.allocate( cell_count ); memset( cell_quadrics, 0, cell_count * sizeof( Quadric ) ); fillCellQuadrics( cell_quadrics, vertex_positions, vertex_count, vertex_cells ); // for each target cell, find the vertex with the minimal error unsigned int *cell_remap = allocator.allocate( cell_count ); float *cell_errors = allocator.allocate( cell_count ); fillCellRemap( cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count ); // copy results to the output assert( cell_count <= target_vertex_count ); memcpy( destination, cell_remap, sizeof( unsigned int ) * cell_count ); #if TRACE printf( "result: %d cells\n", int( cell_count ) ); #endif return cell_count; }