Boosting Classification (OpenCV) imagery_opencv ParameterMultipleInput|FEATURES|Features|3|False ParameterBoolean|NORMALIZE|Normalize|False ParameterVector|TRAIN_AREAS|Training Areas|-1|False ParameterTable|TRAIN_CLASS|Class Identifier|False OutputRaster|CLASSES|Classification ParameterNumber|MAX_DEPTH|Maximum Tree Depth| 1|None| 10 ParameterNumber|MIN_SAMPLES|Minimum Sample Count| 2|None| 2 ParameterNumber|MAX_CATEGRS|Maximum Categories| 1|None| 10 ParameterBoolean|1SE_RULE|Use 1SE Rule|True ParameterBoolean|TRUNC_PRUNED|Truncate Pruned Trees|True ParameterNumber|REG_ACCURACY|Regression Accuracy| 0.000000|None| 0.010000 ParameterNumber|WEAK_COUNT|Weak Count| 0|None| 100 ParameterNumber|WGT_TRIM_RATE|Weight Trim Rate| 0.000000| 1.000000| 0.950000 ParameterSelection|BOOST_TYPE|Boost Type|[0] Discrete AdaBoost;[1] Real AdaBoost;[2] LogitBoost;[3] Gentle AdaBoost| 1