TrainImagesClassifier-svm
otbcli_TrainImagesClassifier
TrainImagesClassifier (svm)
Learning
Train a classifier from multiple pairs of images and training vector data.
ParameterMultipleInput
io.il
Input Image List
A list of input images.
False
ParameterMultipleInput
io.vd
Input Vector Data List
A list of vector data to select the training samples.
False
ParameterFile
io.imstat
Input XML image statistics file
Input XML file containing the mean and the standard deviation of the input images.
True
OutputFile
io.confmatout
Output confusion matrix
Output file containing the confusion matrix (.csv format).
OutputFile
io.out
Output model
Output file containing the model estimated (.txt format).
ParameterNumber
elev.default
Default elevation
This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.
0
ParameterNumber
sample.mt
Maximum training sample size per class
Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.
1000
ParameterNumber
sample.mv
Maximum validation sample size per class
Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.
1000
ParameterBoolean
sample.edg
On edge pixel inclusion
Takes pixels on polygon edge into consideration when building training and validation samples.
True
ParameterNumber
sample.vtr
Training and validation sample ratio
Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).
0.5
ParameterString
sample.vfn
Name of the discrimination field
Name of the field used to discriminate class labels in the input vector data files.
Class
False
ParameterSelection
classifier
Classifier to use for the training
Choice of the classifier to use for the training.
svm
0
ParameterSelection
classifier.svm.m
SVM Model Type
Type of SVM formulation.
csvc
nusvc
oneclass
0
ParameterSelection
classifier.svm.k
SVM Kernel Type
SVM Kernel Type.
linear
rbf
poly
sigmoid
0
ParameterNumber
classifier.svm.c
Cost parameter C
SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.
1
ParameterNumber
classifier.svm.nu
Parameter nu of a SVM optimization problem (NU_SVC / ONE_CLASS)
Parameter nu of a SVM optimization problem.
0
ParameterNumber
classifier.svm.coef0
Parameter coef0 of a kernel function (POLY / SIGMOID)
Parameter coef0 of a kernel function (POLY / SIGMOID).
0
ParameterNumber
classifier.svm.gamma
Parameter gamma of a kernel function (POLY / RBF / SIGMOID)
Parameter gamma of a kernel function (POLY / RBF / SIGMOID).
1
ParameterNumber
classifier.svm.degree
Parameter degree of a kernel function (POLY)
Parameter degree of a kernel function (POLY).
1
ParameterBoolean
classifier.svm.opt
Parameters optimization
SVM parameters optimization flag.
-If set to True, then the optimal SVM parameters will be estimated. Parameters are considered optimal by OpenCV when the cross-validation estimate of the test set error is minimal. Finally, the SVM training process is computed 10 times with these optimal parameters over subsets corresponding to 1/10th of the training samples using the k-fold cross-validation (with k = 10).
-If set to False, the SVM classification process will be computed once with the currently set input SVM parameters over the training samples.
-Thus, even with identical input SVM parameters and a similar random seed, the output SVM models will be different according to the method used (optimized or not) because the samples are not identically processed within OpenCV.
True
ParameterNumber
rand
set user defined seed
Set specific seed. with integer value.
0