SOMClassification
otbcli_SOMClassification
SOM Classification
Learning
SOM image classification.
ParameterRaster
in
InputImage
Input image to classify.
False
OutputRaster
out
OutputImage
Output classified image (each pixel contains the index of its corresponding vector in the SOM).
ParameterRaster
vm
ValidityMask
Validity mask (only pixels corresponding to a mask value greater than 0 will be used for learning)
True
ParameterNumber
tp
TrainingProbability
Probability for a sample to be selected in the training set
1
ParameterNumber
ts
TrainingSetSize
Maximum training set size (in pixels)
0
ParameterNumber
sl
StreamingLines
Number of lines in each streaming block (used during data sampling)
0
OutputRaster
som
SOM Map
Output image containing the Self-Organizing Map
ParameterNumber
sx
SizeX
X size of the SOM map
32
ParameterNumber
sy
SizeY
Y size of the SOM map
32
ParameterNumber
nx
NeighborhoodX
X size of the initial neighborhood in the SOM map
10
ParameterNumber
ny
NeighborhoodY
Y size of the initial neighborhood in the SOM map
10
ParameterNumber
ni
NumberIteration
Number of iterations for SOM learning
5
ParameterNumber
bi
BetaInit
Initial learning coefficient
1
ParameterNumber
bf
BetaFinal
Final learning coefficient
0.1
ParameterNumber
iv
InitialValue
Maximum initial neuron weight
0
ParameterNumber
ram
Available RAM (Mb)
Available memory for processing (in MB)
128
ParameterNumber
rand
set user defined seed
Set specific seed. with integer value.
0