TrainImagesClassifier-ann
otbcli_TrainImagesClassifier
TrainImagesClassifier (ann)
Learning
Train a classifier from multiple pairs of images and training vector data.
ParameterMultipleInput
io.il
Input Image List
A list of input images.
False
ParameterMultipleInput
io.vd
Input Vector Data List
A list of vector data to select the training samples.
False
ParameterFile
io.imstat
Input XML image statistics file
Input XML file containing the mean and the standard deviation of the input images.
True
OutputFile
io.confmatout
Output confusion matrix
Output file containing the confusion matrix (.csv format).
OutputFile
io.out
Output model
Output file containing the model estimated (.txt format).
ParameterNumber
elev.default
Default elevation
This parameter allows to set the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.
0
ParameterNumber
sample.mt
Maximum training sample size per class
Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.
1000
ParameterNumber
sample.mv
Maximum validation sample size per class
Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.
1000
ParameterBoolean
sample.edg
On edge pixel inclusion
Takes pixels on polygon edge into consideration when building training and validation samples.
True
ParameterNumber
sample.vtr
Training and validation sample ratio
Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).
0.5
ParameterString
sample.vfn
Name of the discrimination field
Name of the field used to discriminate class labels in the input vector data files.
Class
False
ParameterSelection
classifier
Classifier to use for the training
Choice of the classifier to use for the training.
ann
0
ParameterSelection
classifier.ann.t
Train Method Type
Type of training method for the multilayer perceptron (MLP) neural network.
reg
back
0
ParameterString
classifier.ann.sizes
Number of neurons in each intermediate layer
The number of neurons in each intermediate layer (excluding input and output layers).
False
ParameterSelection
classifier.ann.f
Neuron activation function type
Neuron activation function.
ident
sig
gau
1
ParameterNumber
classifier.ann.a
Alpha parameter of the activation function
Alpha parameter of the activation function (used only with sigmoid and gaussian functions).
1
ParameterNumber
classifier.ann.b
Beta parameter of the activation function
Beta parameter of the activation function (used only with sigmoid and gaussian functions).
1
ParameterNumber
classifier.ann.bpdw
Strength of the weight gradient term in the BACKPROP method
Strength of the weight gradient term in the BACKPROP method. The recommended value is about 0.1.
0.1
ParameterNumber
classifier.ann.bpms
Strength of the momentum term (the difference between weights on the 2 previous iterations)
Strength of the momentum term (the difference between weights on the 2 previous iterations). This parameter provides some inertia to smooth the random fluctuations of the weights. It can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.
0.1
ParameterNumber
classifier.ann.rdw
Initial value Delta_0 of update-values Delta_{ij} in RPROP method
Initial value Delta_0 of update-values Delta_{ij} in RPROP method (default = 0.1).
0.1
ParameterNumber
classifier.ann.rdwm
Update-values lower limit Delta_{min} in RPROP method
Update-values lower limit Delta_{min} in RPROP method. It must be positive (default = 1e-7).
1e-07
ParameterSelection
classifier.ann.term
Termination criteria
Termination criteria.
iter
eps
all
2
ParameterNumber
classifier.ann.eps
Epsilon value used in the Termination criteria
Epsilon value used in the Termination criteria.
0.01
ParameterNumber
classifier.ann.iter
Maximum number of iterations used in the Termination criteria
Maximum number of iterations used in the Termination criteria.
1000
ParameterNumber
rand
set user defined seed
Set specific seed. with integer value.
0