TrainRegression-gbt
otbcli_TrainRegression
TrainRegression (gbt)
Learning
Train a classifier from multiple images to perform regression.
ParameterMultipleInput
io.il
Input Image List
A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.
False
ParameterFile
io.csv
Input CSV file
Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given
True
ParameterFile
io.imstat
Input XML image statistics file
Input XML file containing the mean and the standard deviation of the input images.
True
OutputFile
io.out
Output regression model
Output file containing the model estimated (.txt format).
ParameterNumber
io.mse
Mean Square Error
Mean square error computed with the validation predictors
0.0
False
ParameterNumber
sample.mt
Maximum training predictors
Maximum number of training predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.mv
Maximum validation predictors
Maximum number of validation predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.vtr
Training and validation sample ratio
Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).
0.5
False
ParameterSelection
classifier
Classifier to use for the training
Choice of the classifier to use for the training.
gbt
0
False
ParameterSelection
classifier.gbt.t
Loss Function Type
Type of loss functionused for training.
sqr
abs
hub
0
False
ParameterNumber
classifier.gbt.w
Number of boosting algorithm iterations
Number "w" of boosting algorithm iterations, with w*K being the total number of trees in the GBT model, where K is the output number of classes.
200
False
ParameterNumber
classifier.gbt.s
Regularization parameter
Regularization parameter.
0.01
False
ParameterNumber
classifier.gbt.p
Portion of the whole training set used for each algorithm iteration
Portion of the whole training set used for each algorithm iteration. The subset is generated randomly.
0.8
False
ParameterNumber
classifier.gbt.max
Maximum depth of the tree
The training algorithm attempts to split each node while its depth is smaller than the maximum possible depth of the tree. The actual depth may be smaller if the other termination criteria are met, and/or if the tree is pruned.
3
False
ParameterNumber
rand
set user defined seed
Set specific seed. with integer value.
0
True