/************************************************************************
 * This file has been generated automatically from                      *
 *                                                                      *
 * src/core/geometry/qgsabstractgeometry.h                              *
 *                                                                      *
 * Do not edit manually ! Edit header and run scripts/sipify.pl again   *
 ************************************************************************/







typedef QVector< QgsPoint > QgsPointSequence;
typedef QVector< QVector< QgsPoint > > QgsRingSequence;
typedef QVector< QVector< QVector< QgsPoint > > > QgsCoordinateSequence;


class QgsAbstractGeometry
{
%Docstring
Abstract base class for all geometries

.. versionadded:: 2.10
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
%ConvertToSubClassCode
    if ( qgsgeometry_cast<QgsPoint *>( sipCpp ) != nullptr )
      sipType = sipType_QgsPoint;
    else if ( qgsgeometry_cast<QgsLineString *>( sipCpp ) != nullptr )
      sipType = sipType_QgsLineString;
    else if ( qgsgeometry_cast<QgsCircularString *>( sipCpp ) != nullptr )
      sipType = sipType_QgsCircularString;
    else if ( qgsgeometry_cast<QgsCompoundCurve *>( sipCpp ) != nullptr )
      sipType = sipType_QgsCompoundCurve;
    else if ( qgsgeometry_cast<QgsTriangle *>( sipCpp ) != nullptr )
      sipType = sipType_QgsTriangle;
    else if ( qgsgeometry_cast<QgsPolygon *>( sipCpp ) != nullptr )
      sipType = sipType_QgsPolygon;
    else if ( qgsgeometry_cast<QgsCurvePolygon *>( sipCpp ) != nullptr )
      sipType = sipType_QgsCurvePolygon;
    else if ( qgsgeometry_cast<QgsMultiPoint *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiPoint;
    else if ( qgsgeometry_cast<QgsMultiLineString *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiLineString;
    else if ( qgsgeometry_cast<QgsMultiPolygon *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiPolygon;
    else if ( qgsgeometry_cast<QgsMultiSurface *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiSurface;
    else if ( qgsgeometry_cast<QgsMultiCurve *>( sipCpp ) != nullptr )
      sipType = sipType_QgsMultiCurve;
    else if ( qgsgeometry_cast<QgsGeometryCollection *>( sipCpp ) != nullptr )
      sipType = sipType_QgsGeometryCollection;
    else
      sipType = 0;
%End
  public:
    static const QMetaObject staticMetaObject;

  public:

    enum SegmentationToleranceType
    {

      MaximumAngle,

      MaximumDifference
    };

    enum AxisOrder
    {

      XY,

      YX
    };

    QgsAbstractGeometry();
%Docstring
Constructor for QgsAbstractGeometry.
%End
    virtual ~QgsAbstractGeometry();
    QgsAbstractGeometry( const QgsAbstractGeometry &geom );

    virtual bool operator==( const QgsAbstractGeometry &other ) const = 0;
    virtual bool operator!=( const QgsAbstractGeometry &other ) const = 0;

    virtual QgsAbstractGeometry *clone() const = 0 /Factory/;
%Docstring
Clones the geometry by performing a deep copy
%End

    virtual void clear() = 0;
%Docstring
Clears the geometry, ie reset it to a null geometry
%End

    virtual QgsRectangle boundingBox() const = 0;
%Docstring
Returns the minimal bounding box for the geometry
%End


    virtual int dimension() const = 0;
%Docstring
Returns the inherent dimension of the geometry. For example, this is 0 for a point geometry,
1 for a linestring and 2 for a polygon.
%End

    virtual QString geometryType() const = 0;
%Docstring
Returns a unique string representing the geometry type.

.. seealso:: :py:func:`wkbType`

.. seealso:: :py:func:`wktTypeStr`
%End

    QgsWkbTypes::Type wkbType() const;
%Docstring
Returns the WKB type of the geometry.

.. seealso:: :py:func:`geometryType`

.. seealso:: :py:func:`wktTypeStr`
%End

    QString wktTypeStr() const;
%Docstring
Returns the WKT type string of the geometry.

.. seealso:: :py:func:`geometryType`

.. seealso:: :py:func:`wkbType`
%End

    bool is3D() const;
%Docstring
Returns ``True`` if the geometry is 3D and contains a z-value.

.. seealso:: :py:func:`isMeasure`
%End

    bool isMeasure() const;
%Docstring
Returns ``True`` if the geometry contains m values.

.. seealso:: :py:func:`is3D`
%End

    virtual QgsAbstractGeometry *boundary() const = 0 /Factory/;
%Docstring
Returns the closure of the combinatorial boundary of the geometry (ie the topological boundary of the geometry).
For instance, a polygon geometry will have a boundary consisting of the linestrings for each ring in the polygon.

:return: boundary for geometry. May be ``None`` for some geometry types.

.. versionadded:: 3.0
%End


    virtual bool fromWkb( QgsConstWkbPtr &wkb ) = 0;
%Docstring
Sets the geometry from a WKB string.
After successful read the wkb argument will be at the position where the reading has stopped.

.. seealso:: :py:func:`fromWkt`
%End

    virtual bool fromWkt( const QString &wkt ) = 0;
%Docstring
Sets the geometry from a WKT string.

.. seealso:: :py:func:`fromWkb`
%End


    virtual QByteArray asWkb() const = 0;
%Docstring
Returns a WKB representation of the geometry.

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJson`

.. versionadded:: 3.0
%End

    virtual QString asWkt( int precision = 17 ) const = 0;
%Docstring
Returns a WKT representation of the geometry.

:param precision: number of decimal places for coordinates

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJson`
%End

    virtual QDomElement asGml2( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML2 representation of the geometry.

:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJson`
%End

    virtual QDomElement asGml3( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0;
%Docstring
Returns a GML3 representation of the geometry.

:param doc: DOM document
:param precision: number of decimal places for coordinates
:param ns: XML namespace
:param axisOrder: Axis order for generated GML

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asJson`
%End

    QString asJson( int precision = 17 );
%Docstring
Returns a GeoJSON representation of the geometry as a QString.

:param precision: number of decimal places for coordinates

.. seealso:: :py:func:`asWkb`

.. seealso:: :py:func:`asWkt`

.. seealso:: :py:func:`asGml2`

.. seealso:: :py:func:`asGml3`

.. seealso:: :py:func:`asJsonObject`
%End




    virtual void transform( const QgsCoordinateTransform &ct, QgsCoordinateTransform::TransformDirection d = QgsCoordinateTransform::ForwardTransform, bool transformZ = false ) throw( QgsCsException ) = 0;
%Docstring
Transforms the geometry using a coordinate transform

:param ct: coordinate transform
:param d: transformation direction
:param transformZ: set to ``True`` to also transform z coordinates. This requires that
                   the z coordinates in the geometry represent height relative to the vertical datum
                   of the source CRS (generally ellipsoidal heights) and are expressed in its vertical
                   units (generally meters). If ``False``, then z coordinates will not be changed by the
                   transform.
%End

    virtual void transform( const QTransform &t, double zTranslate = 0.0, double zScale = 1.0,
                            double mTranslate = 0.0, double mScale = 1.0 ) = 0;
%Docstring
Transforms the x and y components of the geometry using a QTransform object ``t``.

Optionally, the geometry's z values can be scaled via ``zScale`` and translated via ``zTranslate``.
Similarly, m-values can be scaled via ``mScale`` and translated via ``mTranslate``.
%End

    virtual void draw( QPainter &p ) const = 0;
%Docstring
Draws the geometry using the specified QPainter.

:param p: destination QPainter
%End

    virtual int vertexNumberFromVertexId( QgsVertexId id ) const = 0;
%Docstring
Returns the vertex number corresponding to a vertex ``id``.

The vertex numbers start at 0, so a return value of 0 corresponds
to the first vertex.

Returns -1 if a corresponding vertex could not be found.

.. versionadded:: 3.0
%End

    virtual bool nextVertex( QgsVertexId &id, QgsPoint &vertex /Out/ ) const = 0;
%Docstring
Returns next vertex id and coordinates

:param id: initial value should be the starting vertex id. The next vertex id will be stored
           in this variable if found.

:return: - ``False`` if at end
         - vertex: container for found node
%End

    virtual void adjacentVertices( QgsVertexId vertex, QgsVertexId &previousVertex /Out/, QgsVertexId &nextVertex /Out/ ) const = 0;
%Docstring
Returns the vertices adjacent to a specified ``vertex`` within a geometry.

.. versionadded:: 3.0
%End

    virtual QgsCoordinateSequence coordinateSequence() const = 0;
%Docstring
Retrieves the sequence of geometries, rings and nodes.

:return: coordinate sequence
%End

    virtual int nCoordinates() const;
%Docstring
Returns the number of nodes contained in the geometry
%End

    virtual QgsPoint vertexAt( QgsVertexId id ) const = 0;
%Docstring
Returns the point corresponding to a specified vertex id
%End

    virtual double closestSegment( const QgsPoint &pt, QgsPoint &segmentPt /Out/,
                                   QgsVertexId &vertexAfter /Out/,
                                   int *leftOf /Out/ = 0, double epsilon = 4 * DBL_EPSILON ) const = 0;
%Docstring
Searches for the closest segment of the geometry to a given point.

:param pt: specifies the point to find closest segment to
:param segmentPt: storage for the closest point within the geometry
:param vertexAfter: storage for the ID of the vertex at the end of the closest segment
:param epsilon: epsilon for segment snapping

:return: - squared distance to closest segment or negative value on error
         - leftOf: indicates whether the point lies on the left side of the geometry (-1 if point is to the left of the geometry, +1 if the point is to the right of the geometry, or 0 for cases where left/right could not be determined, e.g. point exactly on a line) ``False`` if point is to right of segment)
%End


    virtual bool insertVertex( QgsVertexId position, const QgsPoint &vertex ) = 0;
%Docstring
Inserts a vertex into the geometry

:param position: vertex id for position of inserted vertex
:param vertex: vertex to insert

:return: ``True`` if insert was successful

.. seealso:: :py:func:`moveVertex`

.. seealso:: :py:func:`deleteVertex`
%End

    virtual bool moveVertex( QgsVertexId position, const QgsPoint &newPos ) = 0;
%Docstring
Moves a vertex within the geometry

:param position: vertex id for vertex to move
:param newPos: new position of vertex

:return: ``True`` if move was successful

.. seealso:: :py:func:`insertVertex`

.. seealso:: :py:func:`deleteVertex`
%End

    virtual bool deleteVertex( QgsVertexId position ) = 0;
%Docstring
Deletes a vertex within the geometry

:param position: vertex id for vertex to delete

:return: ``True`` if delete was successful

.. seealso:: :py:func:`insertVertex`

.. seealso:: :py:func:`moveVertex`
%End

    virtual double length() const;
%Docstring
Returns the length of the geometry.

.. seealso:: :py:func:`area`

.. seealso:: :py:func:`perimeter`
%End

    virtual double perimeter() const;
%Docstring
Returns the perimeter of the geometry.

.. seealso:: :py:func:`area`

.. seealso:: :py:func:`length`
%End

    virtual double area() const;
%Docstring
Returns the area of the geometry.

.. seealso:: :py:func:`length`

.. seealso:: :py:func:`perimeter`
%End

    virtual double segmentLength( QgsVertexId startVertex ) const = 0;
%Docstring
Returns the length of the segment of the geometry which begins at ``startVertex``.

.. versionadded:: 3.0
%End

    virtual QgsPoint centroid() const;
%Docstring
Returns the centroid of the geometry
%End

    virtual bool isEmpty() const;
%Docstring
Returns ``True`` if the geometry is empty
%End

    virtual bool hasCurvedSegments() const;
%Docstring
Returns ``True`` if the geometry contains curved segments
%End

    virtual QgsAbstractGeometry *segmentize( double tolerance = M_PI / 180., SegmentationToleranceType toleranceType = MaximumAngle ) const /Factory/;
%Docstring
Returns a version of the geometry without curves. Caller takes ownership of
the returned geometry.

:param tolerance: segmentation tolerance
:param toleranceType: maximum segmentation angle or maximum difference between approximation and curve
%End

    virtual QgsAbstractGeometry *toCurveType() const = 0 /Factory/;
%Docstring
Returns the geometry converted to the more generic curve type.
E.g. :py:class:`QgsLineString` -> :py:class:`QgsCompoundCurve`, :py:class:`QgsPolygon` -> QgsCurvePolygon,
:py:class:`QgsMultiLineString` -> :py:class:`QgsMultiCurve`, :py:class:`QgsMultiPolygon` -> :py:class:`QgsMultiSurface`

:return: the converted geometry. Caller takes ownership
%End

    virtual QgsAbstractGeometry *snappedToGrid( double hSpacing, double vSpacing, double dSpacing = 0, double mSpacing = 0 ) const = 0 /Factory/;
%Docstring
Makes a new geometry with all the points or vertices snapped to the closest point of the grid.
Ownership is transferred to the caller.

If the gridified geometry could not be calculated ``None`` will be returned.
It may generate an invalid geometry (in some corner cases).
It can also be thought as rounding the edges and it may be useful for removing errors.
Example:

In this case we use a 2D grid of 1x1 to gridify.
In this case, it can be thought like rounding the x and y of all the points/vertices to full units (remove all decimals).

:param hSpacing: Horizontal spacing of the grid (x axis). 0 to disable.
:param vSpacing: Vertical spacing of the grid (y axis). 0 to disable.
:param dSpacing: Depth spacing of the grid (z axis). 0 (default) to disable.
:param mSpacing: Custom dimension spacing of the grid (m axis). 0 (default) to disable.

.. versionadded:: 3.0
%End

    virtual bool removeDuplicateNodes( double epsilon = 4 * DBL_EPSILON, bool useZValues = false ) = 0;
%Docstring
Removes duplicate nodes from the geometry, wherever removing the nodes does not result in a
degenerate geometry.

The ``epsilon`` parameter specifies the tolerance for coordinates when determining that
vertices are identical.

By default, z values are not considered when detecting duplicate nodes. E.g. two nodes
with the same x and y coordinate but different z values will still be considered
duplicate and one will be removed. If ``useZValues`` is ``True``, then the z values are
also tested and nodes with the same x and y but different z will be maintained.

Note that duplicate nodes are not tested between different parts of a multipart geometry. E.g.
a multipoint geometry with overlapping points will not be changed by this method.

The function will return ``True`` if nodes were removed, or ``False`` if no duplicate nodes
were found.

.. versionadded:: 3.0
%End

    virtual double vertexAngle( QgsVertexId vertex ) const = 0;
%Docstring
Returns approximate angle at a vertex. This is usually the average angle between adjacent
segments, and can be pictured as the orientation of a line following the curvature of the
geometry at the specified vertex.

:param vertex: the vertex id

:return: rotation in radians, clockwise from north
%End

    virtual int vertexCount( int part = 0, int ring = 0 ) const = 0;
%Docstring
Returns the number of vertices of which this geometry is built.
%End

    virtual int ringCount( int part = 0 ) const = 0;
%Docstring
Returns the number of rings of which this geometry is built.
%End

    virtual int partCount() const = 0;
%Docstring
Returns count of parts contained in the geometry.

.. seealso:: :py:func:`vertexCount`

.. seealso:: :py:func:`ringCount`
%End

    virtual bool addZValue( double zValue = 0 ) = 0;
%Docstring
Adds a z-dimension to the geometry, initialized to a preset value.

:param zValue: initial z-value for all nodes

:return: ``True`` on success

.. seealso:: :py:func:`dropZValue`

.. seealso:: :py:func:`addMValue`

.. versionadded:: 2.12
%End

    virtual bool addMValue( double mValue = 0 ) = 0;
%Docstring
Adds a measure to the geometry, initialized to a preset value.

:param mValue: initial m-value for all nodes

:return: ``True`` on success

.. seealso:: :py:func:`dropMValue`

.. seealso:: :py:func:`addZValue`

.. versionadded:: 2.12
%End

    virtual bool dropZValue() = 0;
%Docstring
Drops any z-dimensions which exist in the geometry.

:return: ``True`` if Z values were present and have been removed

.. seealso:: :py:func:`addZValue`

.. seealso:: :py:func:`dropMValue`

.. versionadded:: 2.14
%End

    virtual bool dropMValue() = 0;
%Docstring
Drops any measure values which exist in the geometry.

:return: ``True`` if m-values were present and have been removed

.. seealso:: :py:func:`addMValue`

.. seealso:: :py:func:`dropZValue`

.. versionadded:: 2.14
%End

    virtual void swapXy() = 0;
%Docstring
Swaps the x and y coordinates from the geometry. This can be used
to repair geometries which have accidentally had their latitude and longitude
coordinates reversed.

.. versionadded:: 3.2
%End

    virtual bool convertTo( QgsWkbTypes::Type type );
%Docstring
Converts the geometry to a specified type.

:return: ``True`` if conversion was successful

.. versionadded:: 2.14
%End

    virtual bool isValid( QString &error /Out/, int flags = 0 ) const = 0;
%Docstring
Checks validity of the geometry, and returns ``True`` if the geometry is valid.

:param flags: indicates optional flags which control the type of validity checking performed
              (corresponding to QgsGeometry.ValidityFlags).

:return: - ``True`` if geometry is valid
         - error: will be set to the validity error message


.. versionadded:: 3.8
%End


    QgsGeometryPartIterator parts();
%Docstring
Returns Java-style iterator for traversal of parts of the geometry. This iterator
can safely be used to modify parts of the geometry.

* Example:
.. code-block:: python

       # print the WKT representation of each part in a multi-point geometry
       geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
       for part in geometry.parts():
           print(part.asWkt())

       # single part geometries only have one part - this loop will iterate once only
       geometry = QgsLineString.fromWkt( 'LineString( 0 0, 10 10 )' )
       for part in geometry.parts():
           print(part.asWkt())

       # parts can be modified during the iteration
       geometry = QgsMultiPoint.fromWkt( 'MultiPoint( 0 0, 1 1, 2 2)' )
       for part in geometry.parts():
           part.transform(ct)

       # part iteration can also be combined with vertex iteration
       geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
       for part in geometry.parts():
           for v in part.vertices():
               print(v.x(), v.y())

.. seealso:: :py:func:`vertices`

.. versionadded:: 3.6
%End


    QgsVertexIterator vertices() const;
%Docstring
Returns a read-only, Java-style iterator for traversal of vertices of all the geometry, including all geometry parts and rings.

.. warning::

   The iterator returns a copy of individual vertices, and accordingly geometries cannot be
   modified using the iterator. See transformVertices() for a safe method to modify vertices "in-place".

* Example:
.. code-block:: python

       # print the x and y coordinate for each vertex in a LineString
       geometry = QgsLineString.fromWkt( 'LineString( 0 0, 1 1, 2 2)' )
       for v in geometry.vertices():
           print(v.x(), v.y())

       # vertex iteration includes all parts and rings
       geometry = QgsMultiPolygon.fromWkt( 'MultiPolygon((( 0 0, 0 10, 10 10, 10 0, 0 0 ),( 5 5, 5 6, 6 6, 6 5, 5 5)),((20 2, 22 2, 22 4, 20 4, 20 2)))' )
       for v in geometry.vertices():
           print(v.x(), v.y())

.. seealso:: :py:func:`parts`

.. versionadded:: 3.0
%End

    virtual QgsAbstractGeometry *createEmptyWithSameType() const = 0 /Factory/;
%Docstring
Creates a new geometry with the same class and same WKB type as the original and transfers ownership.
To create it, the geometry is default constructed and then the WKB is changed.

.. seealso:: :py:func:`clone`

.. versionadded:: 3.0
%End

  protected:

    virtual bool hasChildGeometries() const;
%Docstring
Returns whether the geometry has any child geometries (``False`` for point / curve, ``True`` otherwise)

.. note::

   used for vertex_iterator implementation

.. versionadded:: 3.0
%End

    virtual int childCount() const;
%Docstring
Returns number of child geometries (for geometries with child geometries) or child points (for geometries without child geometries - i.e. curve / point)

.. note::

   used for vertex_iterator implementation

.. versionadded:: 3.0
%End

    virtual QgsAbstractGeometry *childGeometry( int index ) const;
%Docstring
Returns pointer to child geometry (for geometries with child geometries - i.e. geom. collection / polygon)

.. note::

   used for vertex_iterator implementation

.. versionadded:: 3.0
%End

    virtual QgsPoint childPoint( int index ) const;
%Docstring
Returns point at index (for geometries without child geometries - i.e. curve / point)

.. note::

   used for vertex_iterator implementation

.. versionadded:: 3.0
%End

  protected:

    void setZMTypeFromSubGeometry( const QgsAbstractGeometry *subggeom, QgsWkbTypes::Type baseGeomType );
%Docstring
Updates the geometry type based on whether sub geometries contain z or m values.
%End

    virtual QgsRectangle calculateBoundingBox() const;
%Docstring
Default calculator for the minimal bounding box for the geometry. Derived classes should override this method
if a more efficient bounding box calculation is available.
%End

    virtual void clearCache() const;
%Docstring
Clears any cached parameters associated with the geometry, e.g., bounding boxes
%End

};


struct QgsVertexId
{
  enum VertexType
  {
    SegmentVertex,
    CurveVertex
  };

  explicit QgsVertexId( int _part = -1, int _ring = -1, int _vertex = -1, VertexType _type = SegmentVertex );

  bool isValid() const;
%Docstring
Returns ``True`` if the vertex id is valid
%End

  bool operator==( QgsVertexId other ) const;
  bool operator!=( QgsVertexId other ) const;
  bool partEqual( QgsVertexId o ) const;
  bool ringEqual( QgsVertexId o ) const;
  bool vertexEqual( QgsVertexId o ) const;
  bool isValid( const QgsAbstractGeometry *geom ) const;

  int part;
  int ring;
  int vertex;
  VertexType type;
};



class QgsVertexIterator
{
%Docstring
Java-style iterator for traversal of vertices of a geometry

.. versionadded:: 3.0
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
  public:
    QgsVertexIterator();
%Docstring
Constructor for QgsVertexIterator
%End

    QgsVertexIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End

    bool hasNext() const;
%Docstring
Find out whether there are more vertices
%End

    QgsPoint next();
%Docstring
Returns next vertex of the geometry (undefined behavior if hasNext() returns ``False`` before calling next())
%End

    QgsVertexIterator *__iter__();
%MethodCode
    sipRes = sipCpp;
%End

    SIP_PYOBJECT __next__() /TypeHint="QgsPoint"/;
%MethodCode
    if ( sipCpp->hasNext() )
      sipRes = sipConvertFromType( new QgsPoint( sipCpp->next() ), sipType_QgsPoint, Py_None );
    else
      PyErr_SetString( PyExc_StopIteration, "" );
%End

};

class QgsGeometryPartIterator
{
%Docstring
Java-style iterator for traversal of parts of a geometry

.. versionadded:: 3.6
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
  public:
    QgsGeometryPartIterator();
%Docstring
Constructor for QgsGeometryPartIterator
%End

    QgsGeometryPartIterator( QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End

    bool hasNext() const;
%Docstring
Find out whether there are more parts
%End

    QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if hasNext() returns ``False`` before calling next())
%End

    QgsGeometryPartIterator *__iter__();
%MethodCode
    sipRes = sipCpp;
%End

    SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
    if ( sipCpp->hasNext() )
      sipRes = sipConvertFromType( sipCpp->next(), sipType_QgsAbstractGeometry, NULL );
    else
      PyErr_SetString( PyExc_StopIteration, "" );
%End

};


class QgsGeometryConstPartIterator
{
%Docstring
Java-style iterator for const traversal of parts of a geometry

.. versionadded:: 3.6
%End

%TypeHeaderCode
#include "qgsabstractgeometry.h"
%End
  public:
    QgsGeometryConstPartIterator();
%Docstring
Constructor for QgsGeometryConstPartIterator
%End

    QgsGeometryConstPartIterator( const QgsAbstractGeometry *geometry );
%Docstring
Constructs iterator for the given geometry
%End

    bool hasNext() const;
%Docstring
Find out whether there are more parts
%End

    const QgsAbstractGeometry *next();
%Docstring
Returns next part of the geometry (undefined behavior if hasNext() returns ``False`` before calling next())
%End

    QgsGeometryConstPartIterator *__iter__();
%MethodCode
    sipRes = sipCpp;
%End

    SIP_PYOBJECT __next__() /TypeHint="QgsAbstractGeometry"/;
%MethodCode
    if ( sipCpp->hasNext() )
      sipRes = sipConvertFromType( const_cast< QgsAbstractGeometry * >( sipCpp->next() ), sipType_QgsAbstractGeometry, NULL );
    else
      PyErr_SetString( PyExc_StopIteration, "" );
%End

};

/************************************************************************
 * This file has been generated automatically from                      *
 *                                                                      *
 * src/core/geometry/qgsabstractgeometry.h                              *
 *                                                                      *
 * Do not edit manually ! Edit header and run scripts/sipify.pl again   *
 ************************************************************************/