TrainRegression-dt
otbcli_TrainRegression
TrainRegression (dt)
Learning
Train a classifier from multiple images to perform regression.
ParameterMultipleInput
io.il
Input Image List
A list of input images. First (n-1) bands should contain the predictor. The last band should contain the output value to predict.
False
ParameterFile
io.csv
Input CSV file
Input CSV file containing the predictors, and the output values in last column. Only used when no input image is given
True
ParameterFile
io.imstat
Input XML image statistics file
Input XML file containing the mean and the standard deviation of the input images.
True
OutputFile
io.out
Output regression model
Output file containing the model estimated (.txt format).
ParameterNumber
io.mse
Mean Square Error
Mean square error computed with the validation predictors
0.0
False
ParameterNumber
sample.mt
Maximum training predictors
Maximum number of training predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.mv
Maximum validation predictors
Maximum number of validation predictors (default = 1000) (no limit = -1).
1000
False
ParameterNumber
sample.vtr
Training and validation sample ratio
Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).
0.5
False
ParameterSelection
classifier
Classifier to use for the training
Choice of the classifier to use for the training.
dt
0
False
ParameterNumber
classifier.dt.max
Maximum depth of the tree
The training algorithm attempts to split each node while its depth is smaller than the maximum possible depth of the tree. The actual depth may be smaller if the other termination criteria are met, and/or if the tree is pruned.
65535
False
ParameterNumber
classifier.dt.min
Minimum number of samples in each node
If all absolute differences between an estimated value in a node and the values of the train samples in this node are smaller than this regression accuracy parameter, then the node will not be split.
10
False
ParameterNumber
classifier.dt.ra
Termination criteria for regression tree
0.01
False
ParameterNumber
classifier.dt.cat
Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split
Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split.
10
False
ParameterNumber
classifier.dt.f
K-fold cross-validations
If cv_folds > 1, then it prunes a tree with K-fold cross-validation where K is equal to cv_folds.
10
False
ParameterBoolean
classifier.dt.r
Set Use1seRule flag to false
If true, then a pruning will be harsher. This will make a tree more compact and more resistant to the training data noise but a bit less accurate.
True
True
ParameterBoolean
classifier.dt.t
Set TruncatePrunedTree flag to false
If true, then pruned branches are physically removed from the tree.
True
True
ParameterNumber
rand
set user defined seed
Set specific seed. with integer value.
0
True