D-Infinity Distance Up

(c) 2010 by David G. Tarboton
This tool calculates the distance from each grid cell up to the ridge cells along the reverse D-infinity flow directions. Ridge cells are defined to be grid cells that have no contribution from grid cells further upslope. Given the convergence of multiple flow paths at any grid cell, any given grid cell can have multiple upslope ridge cells. There are three statictical methods that this tool can use: maximum distance, minimum distance and waited flow average over these flow paths. A variant on the above is to consider only grid cells that contribute flow with a proportion greater than a user specified threshold (t) to be considered as upslope of any given grid cell. Setting t=0.5 would result in only one flow path from any grid cell and would give the result equivalent to a D8 flow model, rather than D-infinity flow model, where flow is proportioned between two downslope grid cells. Finally there are several different optional paths that can be measured: the total straight line path (Pythagoras), the horizontal component of the straight line path, the vertical component of the straight line path, or the total surface flow path.

Parameters

Number of Processes
Integer
The number of stripes that the domain will be divided into and the number of MPI parallel processes that will be spawned to evaluate each of the stripes.
D-Infinity Flow Direction Grid
Raster Grid
A grid giving flow direction by the D-infinity method. Flow direction is measured in radians, counter clockwise from east. This can be created by the tool "D-Infinity Flow Directions".
Pit Filled Elevation Grid
Raster Grid
This input is a grid of elevation values. As a general rule, it is recommended that you use a grid of elevation values that have had the pits removed for this input. Pits are generally taken to be artifacts that interfere with the analysis of flow across them. This grid can be obtained as the output of the "Pit Remove" tool, in which case it contains elevation values where the pits have been filled to the point where they just drain.
Slope Grid
Raster Grid
This input is a grid of slope values. This is measured as drop/distance and it is most often obtained as the output of the "D-Infinity Flow Directions" tool.
Statistical Method
Choise
Statistical method used to calculate the distance down to the stream. In the D-Infinity flow model, the outflow from each grid cell is proportioned between two downslope grid cells. Therefore, the distance from any grid cell to a stream is not uniquely defined. Flow that originates at a particular grid cell may enter the stream at a number of cells. The distance to the stream may be defined as the longest (maximum), shortest (minimum) or weighted average of the distance down to the stream. Default is Average.
Distance Method
Choise
Distance method used to calculate the distance down to the stream. One of several ways of measuring distance may be selected: the total straight line path (Pythagoras), the horizontal component of the straight line path (horizontal), the vertical component of the straight line path (vertical), or the total surface flow path (surface). Default is Horizontal.
Proportion Threshold
Double
The proportion threshold parameter where only grid cells that contribute flow with a proportion greater than this user specified threshold (t) is considered to be upslope of any given grid cell. Setting t=0.5 would result in only one flow path from any grid cell and would give the result equivalent to a D8 flow model, rather than D-Infinity flow model, where flow is proportioned between two downslope grid cells. Default 0.5.
Check for Edge Contamination
Boolean
A flag that determines whether the tool should check for edge contamination. This is defined as the possibility that a value may be underestimated due to grid cells outside of the domain not being counted. Default True.

Outputs

D-Infinity Distance Up
Raster Grid
Creates a grid containing the distances up to the ridge calculated using the D-Infinity flow model and the statistical and path methods chosen.