Boosting Classification (OpenCV) imagery_opencv ParameterMultipleInput|FEATURES|Features|3|False ParameterBoolean|NORMALIZE|Normalize|False ParameterVector|TRAIN_AREAS|Training Areas|-1|False ParameterTable|TRAIN_CLASS|Class Identifier|False OutputRaster|CLASSES|Classification QgsProcessingParameterNumber|MAX_DEPTH|Maximum Tree Depth|QgsProcessingParameterNumber.Integer|10|False| 1|None QgsProcessingParameterNumber|MIN_SAMPLES|Minimum Sample Count|QgsProcessingParameterNumber.Integer|2|False| 2|None QgsProcessingParameterNumber|MAX_CATEGRS|Maximum Categories|QgsProcessingParameterNumber.Integer|10|False| 1|None ParameterBoolean|1SE_RULE|Use 1SE Rule|True ParameterBoolean|TRUNC_PRUNED|Truncate Pruned Trees|True QgsProcessingParameterNumber|REG_ACCURACY|Regression Accuracy|QgsProcessingParameterNumber.Double|0.010000|False| 0.000000|None QgsProcessingParameterNumber|WEAK_COUNT|Weak Count|QgsProcessingParameterNumber.Integer|100|False| 0|None QgsProcessingParameterNumber|WGT_TRIM_RATE|Weight Trim Rate|QgsProcessingParameterNumber.Double|0.950000|False| 0.000000| 1.000000 ParameterSelection|BOOST_TYPE|Boost Type|[0] Discrete AdaBoost;[1] Real AdaBoost;[2] LogitBoost;[3] Gentle AdaBoost| 1