/************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgstriangle.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/ class QgsTriangle : QgsPolygonV2 { %Docstring Triangle geometry type. .. versionadded:: 3.0 %End %TypeHeaderCode #include "qgstriangle.h" %End public: QgsTriangle(); QgsTriangle( const QgsPointV2 &p1, const QgsPointV2 &p2, const QgsPointV2 &p3 ); %Docstring Construct a QgsTriangle from three QgsPointV2. An empty triangle is returned if there are identical points or if the points are collinear. \param p1 first point \param p2 second point \param p3 third point %End explicit QgsTriangle( const QgsPoint &p1, const QgsPoint &p2, const QgsPoint &p3 ); %Docstring Construct a QgsTriangle from three QgsPoint. An empty triangle is returned if there are identical points or if the points are collinear. \param p1 first point \param p2 second point \param p3 third point %End explicit QgsTriangle( const QPointF p1, const QPointF p2, const QPointF p3 ); %Docstring Construct a QgsTriangle from three QPointF. An empty triangle is returned if there are identical points or if the points are collinear. \param p1 first point \param p2 second point \param p3 third point %End virtual QString geometryType() const; virtual QgsTriangle *clone() const /Factory/; virtual void clear(); virtual bool fromWkb( QgsConstWkbPtr &wkbPtr ); virtual bool fromWkt( const QString &wkt ); virtual QgsPolygonV2 *surfaceToPolygon() const /Factory/; virtual QgsAbstractGeometry *toCurveType() const /Factory/; virtual void addInteriorRing( QgsCurve *ring /Transfer/ ); %Docstring Inherited method not used. You cannot add an interior ring into a triangle. %End virtual bool deleteVertex( QgsVertexId position ); %Docstring Inherited method not used. You cannot delete or insert a vertex directly. Returns always false. :rtype: bool %End virtual bool insertVertex( QgsVertexId position, const QgsPointV2 &vertex ); %Docstring Inherited method not used. You cannot delete or insert a vertex directly. Returns always false. :rtype: bool %End virtual bool moveVertex( QgsVertexId vId, const QgsPointV2 &newPos ); virtual void setExteriorRing( QgsCurve *ring /Transfer/ ); virtual QgsAbstractGeometry *boundary() const /Factory/; QgsPointV2 vertexAt( int atVertex ) const; %Docstring Returns coordinates of a vertex. \param atVertex index of the vertex :return: Coordinates of the vertex or QgsPointV2(0,0) on error (``atVertex`` < 0 or > 3). :rtype: QgsPointV2 %End QVector lengths() const; %Docstring Returns the three lengths of the triangle. :return: Lengths of triangle ABC where [AB] is at 0, [BC] is at 1, [CA] is at 2 * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.lengths() # [5.0, 5.0, 7.0710678118654755] \endcode :rtype: list of float %End QVector angles() const; %Docstring Returns the three angles of the triangle. :return: Angles in radians of triangle ABC where angle BAC is at 0, angle ABC is at 1, angle BCA is at 2 * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) [math.degrees(i) for i in tri.angles()] # [45.0, 90.0, 45.0] \endcode :rtype: list of float %End bool isIsocele( double lengthTolerance = 0.0001 ) const; %Docstring Is the triangle isocele (two sides with the same length)? \param lengthTolerance The tolerance to use :return: True or False * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.lengths() # [5.0, 5.0, 7.0710678118654755] tri.isIsocele() # True # length of [AB] == length of [BC] \endcode :rtype: bool %End bool isEquilateral( double lengthTolerance = 0.0001 ) const; %Docstring Is the triangle equilateral (three sides with the same length)? \param lengthTolerance The tolerance to use :return: True or False * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 10, 10 ), QgsPointV2( 16, 10 ), QgsPointV2( 13, 15.1962 ) ) tri.lengths() # [6.0, 6.0000412031918575, 6.0000412031918575] tri.isEquilateral() # True # All lengths are close to 6.0 \endcode :rtype: bool %End bool isRight( double angleTolerance = 0.0001 ) const; %Docstring Is the triangle right-angled? \param angleTolerance The tolerance to use :return: True or False * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) [math.degrees(i) for i in tri.angles()] # [45.0, 90.0, 45.0] tri.isRight() # True # angle of ABC == 90 \endcode :rtype: bool %End bool isScalene( double lengthTolerance = 0.0001 ) const; %Docstring Is the triangle scalene (all sides have differen lengths)? \param lengthTolerance The tolerance to use :return: True or False :return: True or False * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 7.2825, 4.2368 ), QgsPointV2( 13.0058, 3.3218 ), QgsPointV2( 9.2145, 6.5242 ) ) tri.lengths() # [5.795980321740233, 4.962793714229921, 2.994131386562721] tri.isScalene() # True # All lengths are different \endcode :rtype: bool %End QVector altitudes( ) const; %Docstring An altitude is a segment (defined by a QgsLineString) from a vertex to the opposite side (or, if necessary, to the extension of the opposite side). :return: Three altitudes from this triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) [alt.asWkt() for alt in tri.altitudes()] # ['LineString (0 0, 0 5)', 'LineString (0 5, 2.5 2.5)', 'LineString (5 5, 0 5)'] \endcode :rtype: list of QgsLineString %End QVector medians( ) const; %Docstring A median is a segment (defined by a QgsLineString) from a vertex to the midpoint of the opposite side. :return: Three medians from this triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) [med.asWkt() for med in tri.medians()] # ['LineString (0 0, 2.5 5)', 'LineString (0 5, 2.5 2.5)', 'LineString (5 5, 0 2.5)'] \endcode :rtype: list of QgsLineString %End QVector bisectors( double lengthTolerance = 0.0001 ) const; %Docstring The segment (defined by a QgsLineString) returned bisect the angle of a vertex to the opposite side. \param lengthTolerance The tolerance to use :return: Three angle bisector from this triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) [bis.asWkt() for bis in tri.bisectors()] # ['LineString (0 0, 2.07106781186547462 5)', 'LineString (0 5, 2.5 2.5)', 'LineString (5 5, 0 2.92893218813452538)'] \endcode :rtype: list of QgsLineString %End QgsTriangle medial( ) const; %Docstring Medial (or midpoint) triangle of a triangle ABC is the triangle with vertices at the midpoints of the triangle's sides. :return: The medial from this triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.medial().asWkt() # 'Triangle ((0 2.5, 2.5 5, 2.5 2.5, 0 2.5))' \endcode :rtype: QgsTriangle %End QgsPointV2 orthocenter( double lengthTolerance = 0.0001 ) const; %Docstring An orthocenter is the point of intersection of the altitudes of a triangle. \param lengthTolerance The tolerance to use :return: The orthocenter of the triangle. * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.orthocenter().asWkt() # 'Point (0 5)' \endcode :rtype: QgsPointV2 %End QgsPointV2 circumscribedCenter( ) const; %Docstring Center of the circumscribed circle of the triangle. :return: The center of the circumscribed circle of the triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.circumscribedCenter().asWkt() # 'Point (2.5 2.5)' \endcode :rtype: QgsPointV2 %End double circumscribedRadius( ) const; %Docstring Radius of the circumscribed circle of the triangle. :return: The radius of the circumscribed circle of the triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.circumscribedRadius() # 3.5355339059327378 \endcode :rtype: float %End QgsCircle circumscribedCircle( ) const; %Docstring Circumscribed circle of the triangle. @return The circumbscribed of the triangle with a QgsCircle. Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.circumscribedCircle() # QgsCircle(Point (2.5 2.5), 3.5355339059327378, 0) \endcode :rtype: QgsCircle %End QgsPointV2 inscribedCenter( ) const; %Docstring Center of the inscribed circle of the triangle. :return: The center of the inscribed circle of the triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.inscribedCenter().asWkt() # 'Point (1.46446609406726225 3.53553390593273775)' \endcode :rtype: QgsPointV2 %End double inscribedRadius( ) const; %Docstring Radius of the inscribed circle of the triangle. :return: The radius of the inscribed circle of the triangle * Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.inscribedRadius() # 1.4644660940672622 \endcode :rtype: float %End QgsCircle inscribedCircle( ) const; %Docstring Inscribed circle of the triangle. @return The inscribed of the triangle with a QgsCircle. Example: \code{.py} tri = QgsTriangle( QgsPointV2( 0, 0 ), QgsPointV2( 0, 5 ), QgsPointV2( 5, 5 ) ) tri.inscribedCircle() # QgsCircle(Point (1.46446609406726225 3.53553390593273775), 1.4644660940672622, 0) \endcode :rtype: QgsCircle %End }; /************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgstriangle.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/