# -*- coding: utf-8 -*- """ *************************************************************************** RandomSelectionWithinSubsets.py --------------------- Date : August 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'August 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os import random from qgis.PyQt.QtGui import QIcon from qgis.core import (QgsApplication, QgsFeatureRequest, QgsProcessingException, QgsProcessingUtils, QgsProcessingAlgorithm, QgsProcessingParameterVectorLayer, QgsProcessingParameterEnum, QgsProcessingParameterField, QgsProcessingParameterNumber, QgsProcessingParameterFeatureSink, QgsProcessingOutputVectorLayer) from collections import defaultdict from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] class RandomSelectionWithinSubsets(QgisAlgorithm): INPUT = 'INPUT' METHOD = 'METHOD' NUMBER = 'NUMBER' FIELD = 'FIELD' OUTPUT = 'OUTPUT' def icon(self): return QgsApplication.getThemeIcon("/algorithms/mAlgorithmSelectRandom.svg") def svgIconPath(self): return QgsApplication.iconPath("/algorithms/mAlgorithmSelectRandom.svg") def group(self): return self.tr('Vector selection') def groupId(self): return 'vectorselection' def __init__(self): super().__init__() def flags(self): return super().flags() | QgsProcessingAlgorithm.FlagNoThreading def initAlgorithm(self, config=None): self.methods = [self.tr('Number of selected features'), self.tr('Percentage of selected features')] self.addParameter(QgsProcessingParameterVectorLayer(self.INPUT, self.tr('Input layer'))) self.addParameter(QgsProcessingParameterField(self.FIELD, self.tr('ID field'), None, self.INPUT)) self.addParameter(QgsProcessingParameterEnum(self.METHOD, self.tr('Method'), self.methods, False, 0)) self.addParameter(QgsProcessingParameterNumber(self.NUMBER, self.tr('Number/percentage of selected features'), QgsProcessingParameterNumber.Integer, 10, False, 0.0, 999999999999.0)) self.addOutput(QgsProcessingOutputVectorLayer(self.OUTPUT, self.tr('Selected (stratified random)'))) def name(self): return 'randomselectionwithinsubsets' def displayName(self): return self.tr('Random selection within subsets') def processAlgorithm(self, parameters, context, feedback): layer = self.parameterAsVectorLayer(parameters, self.INPUT, context) method = self.parameterAsEnum(parameters, self.METHOD, context) field = self.parameterAsString(parameters, self.FIELD, context) index = layer.fields().lookupField(field) unique = layer.uniqueValues(index) featureCount = layer.featureCount() value = self.parameterAsInt(parameters, self.NUMBER, context) if method == 0: if value > featureCount: raise QgsProcessingException( self.tr('Selected number is greater that feature count. ' 'Choose lesser value and try again.')) else: if value > 100: raise QgsProcessingException( self.tr("Percentage can't be greater than 100. Set a " "different value and try again.")) value = value / 100.0 total = 100.0 / (featureCount * len(unique)) if featureCount else 1 if not len(unique) == featureCount: classes = defaultdict(list) features = layer.getFeatures(QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry).setSubsetOfAttributes([index])) for i, feature in enumerate(features): if feedback.isCanceled(): break classes[feature.attributes()[index]].append(feature.id()) feedback.setProgress(int(i * total)) selran = [] for k, subset in classes.items(): if feedback.isCanceled(): break selValue = value if method != 1 else int(round(value * len(subset), 0)) if selValue > len(subset): selValue = len(subset) feedback.reportError(self.tr('Subset "{}" is smaller than requested number of features.'.format(k))) selran.extend(random.sample(subset, selValue)) layer.selectByIds(selran) else: layer.selectByIds(list(range(featureCount))) # FIXME: implies continuous feature ids return {self.OUTPUT: parameters[self.INPUT]}