# -*- coding: utf-8 -*-

"""
***************************************************************************
    PointDistance.py
    ---------------------
    Date                 : August 2012
    Copyright            : (C) 2012 by Victor Olaya
    Email                : volayaf at gmail dot com
***************************************************************************
*                                                                         *
*   This program is free software; you can redistribute it and/or modify  *
*   it under the terms of the GNU General Public License as published by  *
*   the Free Software Foundation; either version 2 of the License, or     *
*   (at your option) any later version.                                   *
*                                                                         *
***************************************************************************
"""

__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'

# This will get replaced with a git SHA1 when you do a git archive

__revision__ = '$Format:%H$'

import os
import math

from qgis.PyQt.QtGui import QIcon
from qgis.PyQt.QtCore import QVariant

from qgis.core import (QgsFeatureRequest,
                       QgsField,
                       QgsFields,
                       QgsProject,
                       QgsFeature,
                       QgsGeometry,
                       QgsDistanceArea,
                       QgsFeatureSink,
                       QgsProcessingParameterFeatureSource,
                       QgsProcessing,
                       QgsProcessingParameterEnum,
                       QgsProcessingParameterField,
                       QgsProcessingParameterNumber,
                       QgsProcessingParameterFeatureSink,
                       QgsSpatialIndex,
                       QgsWkbTypes)

from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm

pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]


class PointDistance(QgisAlgorithm):
    INPUT = 'INPUT'
    INPUT_FIELD = 'INPUT_FIELD'
    TARGET = 'TARGET'
    TARGET_FIELD = 'TARGET_FIELD'
    MATRIX_TYPE = 'MATRIX_TYPE'
    NEAREST_POINTS = 'NEAREST_POINTS'
    OUTPUT = 'OUTPUT'

    def icon(self):
        return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'matrix.png'))

    def group(self):
        return self.tr('Vector analysis')

    def groupId(self):
        return 'vectoranalysis'

    def __init__(self):
        super().__init__()

    def initAlgorithm(self, config=None):
        self.mat_types = [self.tr('Linear (N*k x 3) distance matrix'),
                          self.tr('Standard (N x T) distance matrix'),
                          self.tr('Summary distance matrix (mean, std. dev., min, max)')]

        self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
                                                              self.tr('Input point layer'),
                                                              [QgsProcessing.TypeVectorPoint]))
        self.addParameter(QgsProcessingParameterField(self.INPUT_FIELD,
                                                      self.tr('Input unique ID field'),
                                                      parentLayerParameterName=self.INPUT,
                                                      type=QgsProcessingParameterField.Any))
        self.addParameter(QgsProcessingParameterFeatureSource(self.TARGET,
                                                              self.tr('Target point layer'),
                                                              [QgsProcessing.TypeVectorPoint]))
        self.addParameter(QgsProcessingParameterField(self.TARGET_FIELD,
                                                      self.tr('Target unique ID field'),
                                                      parentLayerParameterName=self.TARGET,
                                                      type=QgsProcessingParameterField.Any))
        self.addParameter(QgsProcessingParameterEnum(self.MATRIX_TYPE,
                                                     self.tr('Output matrix type'), options=self.mat_types, defaultValue=0))
        self.addParameter(QgsProcessingParameterNumber(self.NEAREST_POINTS,
                                                       self.tr('Use only the nearest (k) target points'), type=QgsProcessingParameterNumber.Integer, minValue=0, maxValue=9999, defaultValue=0))

        self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Distance matrix'), QgsProcessing.TypeVectorPoint))

    def name(self):
        return 'distancematrix'

    def displayName(self):
        return self.tr('Distance matrix')

    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT, context)
        source_field = self.parameterAsString(parameters, self.INPUT_FIELD, context)
        target_source = self.parameterAsSource(parameters, self.TARGET, context)
        target_field = self.parameterAsString(parameters, self.TARGET_FIELD, context)
        matType = self.parameterAsEnum(parameters, self.MATRIX_TYPE, context)
        nPoints = self.parameterAsInt(parameters, self.NEAREST_POINTS, context)

        if nPoints < 1:
            nPoints = target_source.featureCount()

        if matType == 0:
            # Linear distance matrix
            return self.linearMatrix(parameters, context, source, source_field, target_source, target_field,
                                     matType, nPoints, feedback)
        elif matType == 1:
            # Standard distance matrix
            return self.regularMatrix(parameters, context, source, source_field, target_source, target_field,
                                      nPoints, feedback)
        elif matType == 2:
            # Summary distance matrix
            return self.linearMatrix(parameters, context, source, source_field, target_source, target_field,
                                     matType, nPoints, feedback)

    def linearMatrix(self, parameters, context, source, inField, target_source, targetField,
                     matType, nPoints, feedback):
        inIdx = source.fields().lookupField(inField)
        outIdx = target_source.fields().lookupField(targetField)

        fields = QgsFields()
        input_id_field = source.fields()[inIdx]
        input_id_field.setName('InputID')
        fields.append(input_id_field)
        if matType == 0:
            target_id_field = target_source.fields()[outIdx]
            target_id_field.setName('TargetID')
            fields.append(target_id_field)
            fields.append(QgsField('Distance', QVariant.Double))
        else:
            fields.append(QgsField('MEAN', QVariant.Double))
            fields.append(QgsField('STDDEV', QVariant.Double))
            fields.append(QgsField('MIN', QVariant.Double))
            fields.append(QgsField('MAX', QVariant.Double))

        out_wkb = QgsWkbTypes.multiType(source.wkbType()) if matType == 0 else source.wkbType()
        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
                                               fields, out_wkb, source.sourceCrs())

        index = QgsSpatialIndex(target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setDestinationCrs(source.sourceCrs(), context.transformContext())), feedback)

        distArea = QgsDistanceArea()
        distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
        distArea.setEllipsoid(context.project().ellipsoid())

        features = source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([inIdx]))
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, inFeat in enumerate(features):
            if feedback.isCanceled():
                break

            inGeom = inFeat.geometry()
            inID = str(inFeat.attributes()[inIdx])
            featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
            distList = []
            vari = 0.0
            request = QgsFeatureRequest().setFilterFids(featList).setSubsetOfAttributes([outIdx]).setDestinationCrs(source.sourceCrs(), context.transformContext())
            for outFeat in target_source.getFeatures(request):
                if feedback.isCanceled():
                    break

                outID = outFeat.attributes()[outIdx]
                outGeom = outFeat.geometry()
                dist = distArea.measureLine(inGeom.asPoint(),
                                            outGeom.asPoint())

                if matType == 0:
                    out_feature = QgsFeature()
                    out_geom = QgsGeometry.unaryUnion([inFeat.geometry(), outFeat.geometry()])
                    out_feature.setGeometry(out_geom)
                    out_feature.setAttributes([inID, outID, dist])
                    sink.addFeature(out_feature, QgsFeatureSink.FastInsert)
                else:
                    distList.append(float(dist))

            if matType != 0:
                mean = sum(distList) / len(distList)
                for i in distList:
                    vari += (i - mean) * (i - mean)
                vari = math.sqrt(vari / len(distList))

                out_feature = QgsFeature()
                out_feature.setGeometry(inFeat.geometry())
                out_feature.setAttributes([inID, mean, vari, min(distList), max(distList)])
                sink.addFeature(out_feature, QgsFeatureSink.FastInsert)

            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}

    def regularMatrix(self, parameters, context, source, inField, target_source, targetField,
                      nPoints, feedback):
        distArea = QgsDistanceArea()
        distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
        distArea.setEllipsoid(context.project().ellipsoid())

        inIdx = source.fields().lookupField(inField)
        targetIdx = target_source.fields().lookupField(targetField)

        index = QgsSpatialIndex(target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setDestinationCrs(source.sourceCrs(), context.transformContext())), feedback)

        first = True
        sink = None
        dest_id = None
        features = source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([inIdx]))
        total = 100.0 / source.featureCount() if source.featureCount() else 0
        for current, inFeat in enumerate(features):
            if feedback.isCanceled():
                break

            inGeom = inFeat.geometry()
            if first:
                featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
                first = False
                fields = QgsFields()
                input_id_field = source.fields()[inIdx]
                input_id_field.setName('ID')
                fields.append(input_id_field)
                for f in target_source.getFeatures(QgsFeatureRequest().setFilterFids(featList).setSubsetOfAttributes([targetIdx]).setDestinationCrs(source.sourceCrs(), context.transformContext())):
                    fields.append(QgsField(str(f[targetField]), QVariant.Double))

                (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
                                                       fields, source.wkbType(), source.sourceCrs())

            data = [inFeat[inField]]
            for target in target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setFilterFids(featList).setDestinationCrs(source.sourceCrs(), context.transformContext())):
                if feedback.isCanceled():
                    break
                outGeom = target.geometry()
                dist = distArea.measureLine(inGeom.asPoint(),
                                            outGeom.asPoint())
                data.append(dist)

            out_feature = QgsFeature()
            out_feature.setGeometry(inGeom)
            out_feature.setAttributes(data)
            sink.addFeature(out_feature, QgsFeatureSink.FastInsert)
            feedback.setProgress(int(current * total))

        return {self.OUTPUT: dest_id}