KMeansClassification
otbcli_KMeansClassification
Unsupervised KMeans image classification
Learning
Unsupervised KMeans image classification
ParameterRaster
in
Input Image
Input image to classify.
False
OutputRaster
out
Output Image
Output image containing the class indexes.
ParameterNumber
ram
Available RAM (Mb)
Available memory for processing (in MB)
128
True
ParameterRaster
vm
Validity Mask
Validity mask. Only non-zero pixels will be used to estimate KMeans modes.
True
ParameterNumber
ts
Training set size
Size of the training set (in pixels).
100
True
ParameterNumber
nc
Number of classes
Number of modes, which will be used to generate class membership.
5
False
ParameterNumber
maxit
Maximum number of iterations
Maximum number of iterations for the learning step.
1000
True
ParameterNumber
ct
Convergence threshold
Convergence threshold for class centroid (L2 distance, by default 0.0001).
0.0001
True
OutputFile
outmeans
Centroid filename
Output text file containing centroid positions