/************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgsabstractgeometry.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/ typedef QVector< QgsPoint > QgsPointSequence; typedef QVector< QVector< QgsPoint > > QgsRingSequence; typedef QVector< QVector< QVector< QgsPoint > > > QgsCoordinateSequence; class QgsAbstractGeometry { %Docstring Abstract base class for all geometries .. versionadded:: 2.10 %End %TypeHeaderCode #include "qgsabstractgeometry.h" %End %ConvertToSubClassCode if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsPoint; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsLineString; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsCircularString; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsCompoundCurve; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsTriangle; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsPolygon; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsCurvePolygon; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsMultiPoint; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsMultiLineString; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsMultiPolygon; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsMultiSurface; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsMultiCurve; else if ( qgsgeometry_cast( sipCpp ) != nullptr ) sipType = sipType_QgsGeometryCollection; else sipType = 0; %End public: static const QMetaObject staticMetaObject; public: enum SegmentationToleranceType { MaximumAngle, MaximumDifference }; enum AxisOrder { XY, YX }; QgsAbstractGeometry(); %Docstring Constructor for QgsAbstractGeometry. %End virtual ~QgsAbstractGeometry(); QgsAbstractGeometry( const QgsAbstractGeometry &geom ); virtual bool operator==( const QgsAbstractGeometry &other ) const = 0; virtual bool operator!=( const QgsAbstractGeometry &other ) const = 0; virtual QgsAbstractGeometry *clone() const = 0 /Factory/; %Docstring Clones the geometry by performing a deep copy %End virtual void clear() = 0; %Docstring Clears the geometry, ie reset it to a null geometry %End virtual QgsRectangle boundingBox() const = 0; %Docstring Returns the minimal bounding box for the geometry %End virtual int dimension() const = 0; %Docstring Returns the inherent dimension of the geometry. For example, this is 0 for a point geometry, 1 for a linestring and 2 for a polygon. %End virtual QString geometryType() const = 0; %Docstring Returns a unique string representing the geometry type. .. seealso:: :py:func:`wkbType` .. seealso:: :py:func:`wktTypeStr` %End QgsWkbTypes::Type wkbType() const; %Docstring Returns the WKB type of the geometry. .. seealso:: :py:func:`geometryType` .. seealso:: :py:func:`wktTypeStr` %End QString wktTypeStr() const; %Docstring Returns the WKT type string of the geometry. .. seealso:: :py:func:`geometryType` .. seealso:: :py:func:`wkbType` %End bool is3D() const; %Docstring Returns true if the geometry is 3D and contains a z-value. .. seealso:: :py:func:`isMeasure` %End bool isMeasure() const; %Docstring Returns true if the geometry contains m values. .. seealso:: :py:func:`is3D` %End virtual QgsAbstractGeometry *boundary() const = 0 /Factory/; %Docstring Returns the closure of the combinatorial boundary of the geometry (ie the topological boundary of the geometry). For instance, a polygon geometry will have a boundary consisting of the linestrings for each ring in the polygon. :return: boundary for geometry. May be null for some geometry types. .. versionadded:: 3.0 %End virtual bool fromWkb( QgsConstWkbPtr &wkb ) = 0; %Docstring Sets the geometry from a WKB string. After successful read the wkb argument will be at the position where the reading has stopped. .. seealso:: :py:func:`fromWkt` %End virtual bool fromWkt( const QString &wkt ) = 0; %Docstring Sets the geometry from a WKT string. .. seealso:: :py:func:`fromWkb` %End virtual QByteArray asWkb() const = 0; %Docstring Returns a WKB representation of the geometry. .. seealso:: :py:func:`asWkt` .. seealso:: :py:func:`asGML2` .. seealso:: :py:func:`asGML3` .. seealso:: :py:func:`asJson` .. versionadded:: 3.0 %End virtual QString asWkt( int precision = 17 ) const = 0; %Docstring Returns a WKT representation of the geometry. :param precision: number of decimal places for coordinates .. seealso:: :py:func:`asWkb` .. seealso:: :py:func:`asGml2` .. seealso:: :py:func:`asGml3` .. seealso:: :py:func:`asJson` %End virtual QDomElement asGml2( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0; %Docstring Returns a GML2 representation of the geometry. :param doc: DOM document :param precision: number of decimal places for coordinates :param ns: XML namespace :param axisOrder: Axis order for generated GML .. seealso:: :py:func:`asWkb` .. seealso:: :py:func:`asWkt` .. seealso:: :py:func:`asGml3` .. seealso:: :py:func:`asJson` %End virtual QDomElement asGml3( QDomDocument &doc, int precision = 17, const QString &ns = "gml", AxisOrder axisOrder = QgsAbstractGeometry::AxisOrder::XY ) const = 0; %Docstring Returns a GML3 representation of the geometry. :param doc: DOM document :param precision: number of decimal places for coordinates :param ns: XML namespace :param axisOrder: Axis order for generated GML .. seealso:: :py:func:`asWkb` .. seealso:: :py:func:`asWkt` .. seealso:: :py:func:`asGml2` .. seealso:: :py:func:`asJson` %End virtual QString asJson( int precision = 17 ) const = 0; %Docstring Returns a GeoJSON representation of the geometry. :param precision: number of decimal places for coordinates .. seealso:: :py:func:`asWkb` .. seealso:: :py:func:`asWkt` .. seealso:: :py:func:`asGml2` .. seealso:: :py:func:`asGml3` %End virtual void transform( const QgsCoordinateTransform &ct, QgsCoordinateTransform::TransformDirection d = QgsCoordinateTransform::ForwardTransform, bool transformZ = false ) = 0; %Docstring Transforms the geometry using a coordinate transform :param ct: coordinate transform :param d: transformation direction :param transformZ: set to true to also transform z coordinates. This requires that the z coordinates in the geometry represent height relative to the vertical datum of the source CRS (generally ellipsoidal heights) and are expressed in its vertical units (generally meters). If false, then z coordinates will not be changed by the transform. %End virtual void transform( const QTransform &t, double zTranslate = 0.0, double zScale = 1.0, double mTranslate = 0.0, double mScale = 1.0 ) = 0; %Docstring Transforms the x and y components of the geometry using a QTransform object ``t``. Optionally, the geometry's z values can be scaled via ``zScale`` and translated via ``zTranslate``. Similarly, m-values can be scaled via ``mScale`` and translated via ``mTranslate``. %End virtual void draw( QPainter &p ) const = 0; %Docstring Draws the geometry using the specified QPainter. :param p: destination QPainter %End virtual int vertexNumberFromVertexId( QgsVertexId id ) const = 0; %Docstring Returns the vertex number corresponding to a vertex ``id``. The vertex numbers start at 0, so a return value of 0 corresponds to the first vertex. Returns -1 if a corresponding vertex could not be found. .. versionadded:: 3.0 %End virtual bool nextVertex( QgsVertexId &id, QgsPoint &vertex /Out/ ) const = 0; %Docstring Returns next vertex id and coordinates :param id: initial value should be the starting vertex id. The next vertex id will be stored in this variable if found. :param vertex: container for found node :return: false if at end %End virtual void adjacentVertices( QgsVertexId vertex, QgsVertexId &previousVertex /Out/, QgsVertexId &nextVertex /Out/ ) const = 0; %Docstring Returns the vertices adjacent to a specified ``vertex`` within a geometry. .. versionadded:: 3.0 %End virtual QgsCoordinateSequence coordinateSequence() const = 0; %Docstring Retrieves the sequence of geometries, rings and nodes. :return: coordinate sequence %End virtual int nCoordinates() const; %Docstring Returns the number of nodes contained in the geometry %End virtual QgsPoint vertexAt( QgsVertexId id ) const = 0; %Docstring Returns the point corresponding to a specified vertex id %End virtual double closestSegment( const QgsPoint &pt, QgsPoint &segmentPt /Out/, QgsVertexId &vertexAfter /Out/, int *leftOf /Out/ = 0, double epsilon = 4 * DBL_EPSILON ) const = 0; %Docstring Searches for the closest segment of the geometry to a given point. :param pt: specifies the point to find closest segment to :param segmentPt: storage for the closest point within the geometry :param vertexAfter: storage for the ID of the vertex at the end of the closest segment :param leftOf: indicates whether the point lies on the left side of the geometry (-1 if point is to the left of the geometry, +1 if the point is to the right of the geometry, or 0 for cases where left/right could not be determined, e.g. point exactly on a line) false if point is to right of segment) :param epsilon: epsilon for segment snapping :return: squared distance to closest segment or negative value on error %End virtual bool insertVertex( QgsVertexId position, const QgsPoint &vertex ) = 0; %Docstring Inserts a vertex into the geometry :param position: vertex id for position of inserted vertex :param vertex: vertex to insert :return: true if insert was successful .. seealso:: :py:func:`moveVertex` .. seealso:: :py:func:`deleteVertex` %End virtual bool moveVertex( QgsVertexId position, const QgsPoint &newPos ) = 0; %Docstring Moves a vertex within the geometry :param position: vertex id for vertex to move :param newPos: new position of vertex :return: true if move was successful .. seealso:: :py:func:`insertVertex` .. seealso:: :py:func:`deleteVertex` %End virtual bool deleteVertex( QgsVertexId position ) = 0; %Docstring Deletes a vertex within the geometry :param position: vertex id for vertex to delete :return: true if delete was successful .. seealso:: :py:func:`insertVertex` .. seealso:: :py:func:`moveVertex` %End virtual double length() const; %Docstring Returns the length of the geometry. .. seealso:: :py:func:`area` .. seealso:: :py:func:`perimeter` %End virtual double perimeter() const; %Docstring Returns the perimeter of the geometry. .. seealso:: :py:func:`area` .. seealso:: :py:func:`length` %End virtual double area() const; %Docstring Returns the area of the geometry. .. seealso:: :py:func:`length` .. seealso:: :py:func:`perimeter` %End virtual double segmentLength( QgsVertexId startVertex ) const = 0; %Docstring Returns the length of the segment of the geometry which begins at ``startVertex``. .. versionadded:: 3.0 %End virtual QgsPoint centroid() const; %Docstring Returns the centroid of the geometry %End virtual bool isEmpty() const; %Docstring Returns true if the geometry is empty %End virtual bool hasCurvedSegments() const; %Docstring Returns true if the geometry contains curved segments %End virtual QgsAbstractGeometry *segmentize( double tolerance = M_PI / 180., SegmentationToleranceType toleranceType = MaximumAngle ) const /Factory/; %Docstring Returns a version of the geometry without curves. Caller takes ownership of the returned geometry. :param tolerance: segmentation tolerance :param toleranceType: maximum segmentation angle or maximum difference between approximation and curve %End virtual QgsAbstractGeometry *toCurveType() const = 0 /Factory/; %Docstring Returns the geometry converted to the more generic curve type. E.g. :py:class:`QgsLineString` -> :py:class:`QgsCompoundCurve`, :py:class:`QgsPolygon` -> QgsCurvePolygon, :py:class:`QgsMultiLineString` -> :py:class:`QgsMultiCurve`, :py:class:`QgsMultiPolygon` -> :py:class:`QgsMultiSurface` :return: the converted geometry. Caller takes ownership %End virtual QgsAbstractGeometry *snappedToGrid( double hSpacing, double vSpacing, double dSpacing = 0, double mSpacing = 0 ) const = 0 /Factory/; %Docstring Makes a new geometry with all the points or vertices snapped to the closest point of the grid. Ownership is transferred to the caller. If the gridified geometry could not be calculated a None will be returned. It may generate an invalid geometry (in some corner cases). It can also be thought as rounding the edges and it may be useful for removing errors. Example: In this case we use a 2D grid of 1x1 to gridify. In this case, it can be thought like rounding the x and y of all the points/vertices to full units (remove all decimals). :param hSpacing: Horizontal spacing of the grid (x axis). 0 to disable. :param vSpacing: Vertical spacing of the grid (y axis). 0 to disable. :param dSpacing: Depth spacing of the grid (z axis). 0 (default) to disable. :param mSpacing: Custom dimension spacing of the grid (m axis). 0 (default) to disable. .. versionadded:: 3.0 %End virtual bool removeDuplicateNodes( double epsilon = 4 * DBL_EPSILON, bool useZValues = false ) = 0; %Docstring Removes duplicate nodes from the geometry, wherever removing the nodes does not result in a degenerate geometry. The ``epsilon`` parameter specifies the tolerance for coordinates when determining that vertices are identical. By default, z values are not considered when detecting duplicate nodes. E.g. two nodes with the same x and y coordinate but different z values will still be considered duplicate and one will be removed. If ``useZValues`` is true, then the z values are also tested and nodes with the same x and y but different z will be maintained. Note that duplicate nodes are not tested between different parts of a multipart geometry. E.g. a multipoint geometry with overlapping points will not be changed by this method. The function will return true if nodes were removed, or false if no duplicate nodes were found. .. versionadded:: 3.0 %End virtual double vertexAngle( QgsVertexId vertex ) const = 0; %Docstring Returns approximate angle at a vertex. This is usually the average angle between adjacent segments, and can be pictured as the orientation of a line following the curvature of the geometry at the specified vertex. :param vertex: the vertex id :return: rotation in radians, clockwise from north %End virtual int vertexCount( int part = 0, int ring = 0 ) const = 0; %Docstring Returns the number of vertices of which this geometry is built. %End virtual int ringCount( int part = 0 ) const = 0; %Docstring Returns the number of rings of which this geometry is built. %End virtual int partCount() const = 0; %Docstring Returns count of parts contained in the geometry. .. seealso:: :py:func:`vertexCount` .. seealso:: :py:func:`ringCount` %End virtual bool addZValue( double zValue = 0 ) = 0; %Docstring Adds a z-dimension to the geometry, initialized to a preset value. :param zValue: initial z-value for all nodes :return: true on success .. versionadded:: 2.12 .. seealso:: :py:func:`dropZValue` .. seealso:: :py:func:`addMValue` %End virtual bool addMValue( double mValue = 0 ) = 0; %Docstring Adds a measure to the geometry, initialized to a preset value. :param mValue: initial m-value for all nodes :return: true on success .. versionadded:: 2.12 .. seealso:: :py:func:`dropMValue` .. seealso:: :py:func:`addZValue` %End virtual bool dropZValue() = 0; %Docstring Drops any z-dimensions which exist in the geometry. :return: true if Z values were present and have been removed .. seealso:: :py:func:`addZValue` .. seealso:: :py:func:`dropMValue` .. versionadded:: 2.14 %End virtual bool dropMValue() = 0; %Docstring Drops any measure values which exist in the geometry. :return: true if m-values were present and have been removed .. seealso:: :py:func:`addMValue` .. seealso:: :py:func:`dropZValue` .. versionadded:: 2.14 %End virtual void swapXy() = 0; %Docstring Swaps the x and y coordinates from the geometry. This can be used to repair geometries which have accidentally had their latitude and longitude coordinates reversed. .. versionadded:: 3.2 %End virtual bool convertTo( QgsWkbTypes::Type type ); %Docstring Converts the geometry to a specified type. :return: true if conversion was successful .. versionadded:: 2.14 %End QgsVertexIterator vertices() const; %Docstring Returns Java-style iterator for traversal of vertices of the geometry .. versionadded:: 3.0 %End virtual QgsAbstractGeometry *createEmptyWithSameType() const = 0 /Factory/; %Docstring Creates a new geometry with the same class and same WKB type as the original and transfers ownership. To create it, the geometry is default constructed and then the WKB is changed. .. seealso:: :py:func:`clone` .. versionadded:: 3.0 .. note:: Not available in Python bindings %End protected: virtual bool hasChildGeometries() const; %Docstring Returns whether the geometry has any child geometries (false for point / curve, true otherwise) .. note:: used for vertex_iterator implementation .. versionadded:: 3.0 %End virtual int childCount() const; %Docstring Returns number of child geometries (for geometries with child geometries) or child points (for geometries without child geometries - i.e. curve / point) .. note:: used for vertex_iterator implementation .. versionadded:: 3.0 %End virtual QgsAbstractGeometry *childGeometry( int index ) const; %Docstring Returns pointer to child geometry (for geometries with child geometries - i.e. geom. collection / polygon) .. note:: used for vertex_iterator implementation .. versionadded:: 3.0 %End virtual QgsPoint childPoint( int index ) const; %Docstring Returns point at index (for geometries without child geometries - i.e. curve / point) .. note:: used for vertex_iterator implementation .. versionadded:: 3.0 %End protected: void setZMTypeFromSubGeometry( const QgsAbstractGeometry *subggeom, QgsWkbTypes::Type baseGeomType ); %Docstring Updates the geometry type based on whether sub geometries contain z or m values. %End virtual QgsRectangle calculateBoundingBox() const; %Docstring Default calculator for the minimal bounding box for the geometry. Derived classes should override this method if a more efficient bounding box calculation is available. %End virtual void clearCache() const; %Docstring Clears any cached parameters associated with the geometry, e.g., bounding boxes %End }; struct QgsVertexId { enum VertexType { SegmentVertex, CurveVertex }; explicit QgsVertexId( int _part = -1, int _ring = -1, int _vertex = -1, VertexType _type = SegmentVertex ); bool isValid() const; %Docstring Returns true if the vertex id is valid %End bool operator==( QgsVertexId other ) const; bool operator!=( QgsVertexId other ) const; bool partEqual( QgsVertexId o ) const; bool ringEqual( QgsVertexId o ) const; bool vertexEqual( QgsVertexId o ) const; bool isValid( const QgsAbstractGeometry *geom ) const; int part; int ring; int vertex; VertexType type; }; class QgsVertexIterator { %Docstring Java-style iterator for traversal of vertices of a geometry .. versionadded:: 3.0 %End %TypeHeaderCode #include "qgsabstractgeometry.h" %End public: QgsVertexIterator(); %Docstring Constructor for QgsVertexIterator %End QgsVertexIterator( const QgsAbstractGeometry *geometry ); %Docstring Constructs iterator for the given geometry %End bool hasNext() const; %Docstring Find out whether there are more vertices %End QgsPoint next(); %Docstring Return next vertex of the geometry (undefined behavior if hasNext() returns false before calling next()) %End QgsVertexIterator *__iter__(); %MethodCode sipRes = sipCpp; %End SIP_PYOBJECT __next__(); %MethodCode if ( sipCpp->hasNext() ) sipRes = sipConvertFromType( new QgsPoint( sipCpp->next() ), sipType_QgsPoint, Py_None ); else PyErr_SetString( PyExc_StopIteration, "" ); %End }; /************************************************************************ * This file has been generated automatically from * * * * src/core/geometry/qgsabstractgeometry.h * * * * Do not edit manually ! Edit header and run scripts/sipify.pl again * ************************************************************************/