/****************************************************************************** * QwtPolar Widget Library * Copyright (C) 2008 Uwe Rathmann * * This library is free software; you can redistribute it and/or * modify it under the terms of the Qwt License, Version 1.0 *****************************************************************************/ #include "qwt_point_polar.h" #include "qwt_math.h" #if QT_VERSION >= 0x050200 static QwtPointPolar qwtPointToPolar( const QPointF& point ) { return QwtPointPolar( point ); } #endif namespace { static const struct RegisterQwtPointPolar { inline RegisterQwtPointPolar() { qRegisterMetaType< QwtPointPolar >(); #if QT_VERSION >= 0x050200 QMetaType::registerConverter< QPointF, QwtPointPolar >( qwtPointToPolar ); QMetaType::registerConverter< QwtPointPolar, QPointF >( &QwtPointPolar::toPoint ); #endif } } qwtRegisterQwtPointPolar; } /*! Convert and assign values from a point in Cartesian coordinates \param p Point in Cartesian coordinates \sa setPoint(), toPoint() */ QwtPointPolar::QwtPointPolar( const QPointF& p ) { m_radius = std::sqrt( qwtSqr( p.x() ) + qwtSqr( p.y() ) ); m_azimuth = std::atan2( p.y(), p.x() ); } /*! Convert and assign values from a point in Cartesian coordinates \param p Point in Cartesian coordinates */ void QwtPointPolar::setPoint( const QPointF& p ) { m_radius = std::sqrt( qwtSqr( p.x() ) + qwtSqr( p.y() ) ); m_azimuth = std::atan2( p.y(), p.x() ); } /*! Convert and return values in Cartesian coordinates \return Converted point in Cartesian coordinates \note Invalid or null points will be returned as QPointF(0.0, 0.0) \sa isValid(), isNull() */ QPointF QwtPointPolar::toPoint() const { if ( m_radius <= 0.0 ) return QPointF( 0.0, 0.0 ); const double x = m_radius * std::cos( m_azimuth ); const double y = m_radius * std::sin( m_azimuth ); return QPointF( x, y ); } /*! \brief Compare 2 points Two points are equal to each other if radius and azimuth-coordinates are the same. Points are not equal, when the azimuth differs, but other.azimuth() == azimuth() % (2 * PI). \return True if the point is equal to other; otherwise return false. \sa normalized() */ bool QwtPointPolar::operator==( const QwtPointPolar& other ) const { return m_radius == other.m_radius && m_azimuth == other.m_azimuth; } /*! Compare 2 points Two points are equal to each other if radius and azimuth-coordinates are the same. Points are not equal, when the azimuth differs, but other.azimuth() == azimuth() % (2 * PI). \return True if the point is not equal to other; otherwise return false. \sa normalized() */ bool QwtPointPolar::operator!=( const QwtPointPolar& other ) const { return m_radius != other.m_radius || m_azimuth != other.m_azimuth; } /*! Normalize radius and azimuth When the radius is < 0.0 it is set to 0.0. The azimuth is a value >= 0.0 and < 2 * M_PI. \return Normalized point */ QwtPointPolar QwtPointPolar::normalized() const { const double radius = qwtMaxF( m_radius, 0.0 ); double azimuth = m_azimuth; if ( azimuth < -2.0 * M_PI || azimuth >= 2 * M_PI ) azimuth = std::fmod( m_azimuth, 2 * M_PI ); if ( azimuth < 0.0 ) azimuth += 2 * M_PI; return QwtPointPolar( azimuth, radius ); } #ifndef QT_NO_DEBUG_STREAM #include QDebug operator<<( QDebug debug, const QwtPointPolar& point ) { debug.nospace() << "QwtPointPolar(" << point.azimuth() << "," << point.radius() << ")"; return debug.space(); } #endif