Random Forest Presence Prediction (ViGrA) imagery_vigra ParameterMultipleInput|FEATURES|Features|3|False OutputRaster|PREDICTION|Presence Prediction OutputRaster|PROBABILITY|Presence Probability ParameterVector|PRESENCE|Presence Data|-1|False ParameterNumber|BACKGROUND|Background Sample Density [Percent]| 0.000000| 100.000000| 1.000000 ParameterBoolean|DO_MRMR|Minimum Redundancy Feature Selection|False ParameterNumber|mRMR_NFEATURES|Number of Features| 1|None| 50 ParameterBoolean|mRMR_DISCRETIZE|Discretization|True ParameterNumber|mRMR_THRESHOLD|Discretization Threshold| 0.000000|None| 1.000000 ParameterSelection|mRMR_METHOD|Selection Method|[0] Mutual Information Difference (MID);[1] Mutual Information Quotient (MIQ)| 0 ParameterFile|RF_IMPORT|Import from File|False|False ParameterFile|RF_EXPORT|Export to File|False|False ParameterNumber|RF_TREE_COUNT|Tree Count| 1|None| 32 ParameterNumber|RF_TREE_SAMPLES|Samples per Tree| 0.000000| 1.000000| 1.000000 ParameterBoolean|RF_REPLACE|Sample with Replacement|True ParameterNumber|RF_SPLIT_MIN_SIZE|Minimum Node Split Size| 1|None| 1 ParameterSelection|RF_NODE_FEATURES|Features per Node|[0] logarithmic;[1] square root;[2] all| 1 ParameterSelection|RF_STRATIFICATION|Stratification|[0] none;[1] equal;[2] proportional| 0