# -*- coding: utf-8 -*- """ *************************************************************************** PointDistance.py --------------------- Date : August 2012 Copyright : (C) 2012 by Victor Olaya Email : volayaf at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Victor Olaya' __date__ = 'August 2012' __copyright__ = '(C) 2012, Victor Olaya' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '$Format:%H$' import os import math from qgis.PyQt.QtGui import QIcon from qgis.PyQt.QtCore import QVariant from qgis.core import (QgsFeatureRequest, QgsField, QgsFields, QgsProject, QgsFeature, QgsGeometry, QgsDistanceArea, QgsFeatureSink, QgsProcessingParameterFeatureSource, QgsProcessing, QgsProcessingParameterEnum, QgsProcessingParameterField, QgsProcessingParameterNumber, QgsProcessingParameterFeatureSink, QgsSpatialIndex, QgsWkbTypes) from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] class PointDistance(QgisAlgorithm): INPUT = 'INPUT' INPUT_FIELD = 'INPUT_FIELD' TARGET = 'TARGET' TARGET_FIELD = 'TARGET_FIELD' MATRIX_TYPE = 'MATRIX_TYPE' NEAREST_POINTS = 'NEAREST_POINTS' OUTPUT = 'OUTPUT' def icon(self): return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'matrix.png')) def group(self): return self.tr('Vector analysis') def groupId(self): return 'vectoranalysis' def __init__(self): super().__init__() def initAlgorithm(self, config=None): self.mat_types = [self.tr('Linear (N*k x 3) distance matrix'), self.tr('Standard (N x T) distance matrix'), self.tr('Summary distance matrix (mean, std. dev., min, max)')] self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT, self.tr('Input point layer'), [QgsProcessing.TypeVectorPoint])) self.addParameter(QgsProcessingParameterField(self.INPUT_FIELD, self.tr('Input unique ID field'), parentLayerParameterName=self.INPUT, type=QgsProcessingParameterField.Any)) self.addParameter(QgsProcessingParameterFeatureSource(self.TARGET, self.tr('Target point layer'), [QgsProcessing.TypeVectorPoint])) self.addParameter(QgsProcessingParameterField(self.TARGET_FIELD, self.tr('Target unique ID field'), parentLayerParameterName=self.TARGET, type=QgsProcessingParameterField.Any)) self.addParameter(QgsProcessingParameterEnum(self.MATRIX_TYPE, self.tr('Output matrix type'), options=self.mat_types, defaultValue=0)) self.addParameter(QgsProcessingParameterNumber(self.NEAREST_POINTS, self.tr('Use only the nearest (k) target points'), type=QgsProcessingParameterNumber.Integer, minValue=0, maxValue=9999, defaultValue=0)) self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Distance matrix'), QgsProcessing.TypeVectorPoint)) def name(self): return 'distancematrix' def displayName(self): return self.tr('Distance matrix') def processAlgorithm(self, parameters, context, feedback): source = self.parameterAsSource(parameters, self.INPUT, context) source_field = self.parameterAsString(parameters, self.INPUT_FIELD, context) target_source = self.parameterAsSource(parameters, self.TARGET, context) target_field = self.parameterAsString(parameters, self.TARGET_FIELD, context) matType = self.parameterAsEnum(parameters, self.MATRIX_TYPE, context) nPoints = self.parameterAsInt(parameters, self.NEAREST_POINTS, context) if nPoints < 1: nPoints = target_source.featureCount() if matType == 0: # Linear distance matrix return self.linearMatrix(parameters, context, source, source_field, target_source, target_field, matType, nPoints, feedback) elif matType == 1: # Standard distance matrix return self.regularMatrix(parameters, context, source, source_field, target_source, target_field, nPoints, feedback) elif matType == 2: # Summary distance matrix return self.linearMatrix(parameters, context, source, source_field, target_source, target_field, matType, nPoints, feedback) def linearMatrix(self, parameters, context, source, inField, target_source, targetField, matType, nPoints, feedback): inIdx = source.fields().lookupField(inField) outIdx = target_source.fields().lookupField(targetField) fields = QgsFields() input_id_field = source.fields()[inIdx] input_id_field.setName('InputID') fields.append(input_id_field) if matType == 0: target_id_field = target_source.fields()[outIdx] target_id_field.setName('TargetID') fields.append(target_id_field) fields.append(QgsField('Distance', QVariant.Double)) else: fields.append(QgsField('MEAN', QVariant.Double)) fields.append(QgsField('STDDEV', QVariant.Double)) fields.append(QgsField('MIN', QVariant.Double)) fields.append(QgsField('MAX', QVariant.Double)) out_wkb = QgsWkbTypes.multiType(source.wkbType()) if matType == 0 else source.wkbType() (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context, fields, out_wkb, source.sourceCrs()) index = QgsSpatialIndex(target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setDestinationCrs(source.sourceCrs(), context.transformContext())), feedback) distArea = QgsDistanceArea() distArea.setSourceCrs(source.sourceCrs(), context.transformContext()) distArea.setEllipsoid(context.project().ellipsoid()) features = source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([inIdx])) total = 100.0 / source.featureCount() if source.featureCount() else 0 for current, inFeat in enumerate(features): if feedback.isCanceled(): break inGeom = inFeat.geometry() inID = str(inFeat.attributes()[inIdx]) featList = index.nearestNeighbor(inGeom.asPoint(), nPoints) distList = [] vari = 0.0 request = QgsFeatureRequest().setFilterFids(featList).setSubsetOfAttributes([outIdx]).setDestinationCrs(source.sourceCrs(), context.transformContext()) for outFeat in target_source.getFeatures(request): if feedback.isCanceled(): break outID = outFeat.attributes()[outIdx] outGeom = outFeat.geometry() dist = distArea.measureLine(inGeom.asPoint(), outGeom.asPoint()) if matType == 0: out_feature = QgsFeature() out_geom = QgsGeometry.unaryUnion([inFeat.geometry(), outFeat.geometry()]) out_feature.setGeometry(out_geom) out_feature.setAttributes([inID, outID, dist]) sink.addFeature(out_feature, QgsFeatureSink.FastInsert) else: distList.append(float(dist)) if matType != 0: mean = sum(distList) / len(distList) for i in distList: vari += (i - mean) * (i - mean) vari = math.sqrt(vari / len(distList)) out_feature = QgsFeature() out_feature.setGeometry(inFeat.geometry()) out_feature.setAttributes([inID, mean, vari, min(distList), max(distList)]) sink.addFeature(out_feature, QgsFeatureSink.FastInsert) feedback.setProgress(int(current * total)) return {self.OUTPUT: dest_id} def regularMatrix(self, parameters, context, source, inField, target_source, targetField, nPoints, feedback): distArea = QgsDistanceArea() distArea.setSourceCrs(source.sourceCrs(), context.transformContext()) distArea.setEllipsoid(context.project().ellipsoid()) inIdx = source.fields().lookupField(inField) targetIdx = target_source.fields().lookupField(targetField) index = QgsSpatialIndex(target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setDestinationCrs(source.sourceCrs(), context.transformContext())), feedback) first = True sink = None dest_id = None features = source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([inIdx])) total = 100.0 / source.featureCount() if source.featureCount() else 0 for current, inFeat in enumerate(features): if feedback.isCanceled(): break inGeom = inFeat.geometry() if first: featList = index.nearestNeighbor(inGeom.asPoint(), nPoints) first = False fields = QgsFields() input_id_field = source.fields()[inIdx] input_id_field.setName('ID') fields.append(input_id_field) for f in target_source.getFeatures(QgsFeatureRequest().setFilterFids(featList).setSubsetOfAttributes([targetIdx]).setDestinationCrs(source.sourceCrs(), context.transformContext())): fields.append(QgsField(str(f[targetField]), QVariant.Double)) (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context, fields, source.wkbType(), source.sourceCrs()) data = [inFeat[inField]] for target in target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setFilterFids(featList).setDestinationCrs(source.sourceCrs(), context.transformContext())): if feedback.isCanceled(): break outGeom = target.geometry() dist = distArea.measureLine(inGeom.asPoint(), outGeom.asPoint()) data.append(dist) out_feature = QgsFeature() out_feature.setGeometry(inGeom) out_feature.setAttributes(data) sink.addFeature(out_feature, QgsFeatureSink.FastInsert) feedback.setProgress(int(current * total)) return {self.OUTPUT: dest_id}