Resync internal poly2tri library

This commit is contained in:
Nyall Dawson 2024-02-05 14:05:14 +10:00
parent 9e6e373b79
commit 7d92c8b08d
12 changed files with 1326 additions and 1275 deletions

32
external/poly2tri/common/dll_symbol.h vendored Normal file
View File

@ -0,0 +1,32 @@
/*
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of Poly2Tri nor the names of its contributors may be
* used to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define P2T_DLL_SYMBOL

View File

@ -40,44 +40,44 @@ Point::Point(double x, double y) : x(x), y(y)
}
std::ostream& operator<<(std::ostream& out, const Point& point) {
return out << point.x << "," << point.y;
return out << point.x << "," << point.y;
}
Triangle::Triangle(Point& a, Point& b, Point& c)
{
points_[0] = &a; points_[1] = &b; points_[2] = &c;
neighbors_[0] = nullptr; neighbors_[1] = nullptr; neighbors_[2] = nullptr;
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
interior_ = false;
points_[0] = &a; points_[1] = &b; points_[2] = &c;
neighbors_[0] = nullptr; neighbors_[1] = nullptr; neighbors_[2] = nullptr;
constrained_edge[0] = constrained_edge[1] = constrained_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
interior_ = false;
}
// Update neighbor pointers
void Triangle::MarkNeighbor(Point* p1, Point* p2, Triangle* t)
{
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
neighbors_[0] = t;
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
neighbors_[1] = t;
else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
neighbors_[2] = t;
else
assert(0);
if ((p1 == points_[2] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[2]))
neighbors_[0] = t;
else if ((p1 == points_[0] && p2 == points_[2]) || (p1 == points_[2] && p2 == points_[0]))
neighbors_[1] = t;
else if ((p1 == points_[0] && p2 == points_[1]) || (p1 == points_[1] && p2 == points_[0]))
neighbors_[2] = t;
else
assert(0);
}
// Exhaustive search to update neighbor pointers
void Triangle::MarkNeighbor(Triangle& t)
{
if (t.Contains(points_[1], points_[2])) {
neighbors_[0] = &t;
t.MarkNeighbor(points_[1], points_[2], this);
} else if (t.Contains(points_[0], points_[2])) {
neighbors_[1] = &t;
t.MarkNeighbor(points_[0], points_[2], this);
} else if (t.Contains(points_[0], points_[1])) {
neighbors_[2] = &t;
t.MarkNeighbor(points_[0], points_[1], this);
}
if (t.Contains(points_[1], points_[2])) {
neighbors_[0] = &t;
t.MarkNeighbor(points_[1], points_[2], this);
} else if (t.Contains(points_[0], points_[2])) {
neighbors_[1] = &t;
t.MarkNeighbor(points_[0], points_[2], this);
} else if (t.Contains(points_[0], points_[1])) {
neighbors_[2] = &t;
t.MarkNeighbor(points_[0], points_[1], this);
}
}
/**
@ -86,12 +86,10 @@ void Triangle::MarkNeighbor(Triangle& t)
void Triangle::Clear()
{
Triangle *t;
for( int i=0; i<3; i++ )
{
t = neighbors_[i];
if( t != nullptr )
{
t->ClearNeighbor( this );
for (auto& neighbor : neighbors_) {
t = neighbor;
if (t != nullptr) {
t->ClearNeighbor(this);
}
}
ClearNeighbors();
@ -116,298 +114,298 @@ void Triangle::ClearNeighbor(const Triangle *triangle )
void Triangle::ClearNeighbors()
{
neighbors_[0] = nullptr;
neighbors_[1] = nullptr;
neighbors_[2] = nullptr;
neighbors_[0] = nullptr;
neighbors_[1] = nullptr;
neighbors_[2] = nullptr;
}
void Triangle::ClearDelunayEdges()
{
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
delaunay_edge[0] = delaunay_edge[1] = delaunay_edge[2] = false;
}
Point* Triangle::OppositePoint(Triangle& t, const Point& p)
{
Point *cw = t.PointCW(p);
return PointCW(*cw);
Point *cw = t.PointCW(p);
return PointCW(*cw);
}
// Legalized triangle by rotating clockwise around point(0)
void Triangle::Legalize(Point& point)
{
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &point;
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &point;
}
// Legalize triagnle by rotating clockwise around oPoint
void Triangle::Legalize(Point& opoint, Point& npoint)
{
if (&opoint == points_[0]) {
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &npoint;
} else if (&opoint == points_[1]) {
points_[2] = points_[1];
points_[1] = points_[0];
points_[0] = &npoint;
} else if (&opoint == points_[2]) {
points_[0] = points_[2];
points_[2] = points_[1];
points_[1] = &npoint;
} else {
assert(0);
}
if (&opoint == points_[0]) {
points_[1] = points_[0];
points_[0] = points_[2];
points_[2] = &npoint;
} else if (&opoint == points_[1]) {
points_[2] = points_[1];
points_[1] = points_[0];
points_[0] = &npoint;
} else if (&opoint == points_[2]) {
points_[0] = points_[2];
points_[2] = points_[1];
points_[1] = &npoint;
} else {
assert(0);
}
}
int Triangle::Index(const Point* p)
{
if (p == points_[0]) {
return 0;
} else if (p == points_[1]) {
return 1;
} else if (p == points_[2]) {
return 2;
}
assert(0);
return -1;
if (p == points_[0]) {
return 0;
} else if (p == points_[1]) {
return 1;
} else if (p == points_[2]) {
return 2;
}
assert(0);
return -1;
}
int Triangle::EdgeIndex(const Point* p1, const Point* p2)
{
if (points_[0] == p1) {
if (points_[1] == p2) {
return 2;
} else if (points_[2] == p2) {
return 1;
if (points_[0] == p1) {
if (points_[1] == p2) {
return 2;
} else if (points_[2] == p2) {
return 1;
}
} else if (points_[1] == p1) {
if (points_[2] == p2) {
return 0;
} else if (points_[0] == p2) {
return 2;
}
} else if (points_[2] == p1) {
if (points_[0] == p2) {
return 1;
} else if (points_[1] == p2) {
return 0;
}
}
} else if (points_[1] == p1) {
if (points_[2] == p2) {
return 0;
} else if (points_[0] == p2) {
return 2;
}
} else if (points_[2] == p1) {
if (points_[0] == p2) {
return 1;
} else if (points_[1] == p2) {
return 0;
}
}
return -1;
return -1;
}
void Triangle::MarkConstrainedEdge(int index)
{
constrained_edge[index] = true;
constrained_edge[index] = true;
}
void Triangle::MarkConstrainedEdge(Edge& edge)
{
MarkConstrainedEdge(edge.p, edge.q);
MarkConstrainedEdge(edge.p, edge.q);
}
// Mark edge as constrained
void Triangle::MarkConstrainedEdge(Point* p, Point* q)
{
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
constrained_edge[2] = true;
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
constrained_edge[1] = true;
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
constrained_edge[0] = true;
}
if ((q == points_[0] && p == points_[1]) || (q == points_[1] && p == points_[0])) {
constrained_edge[2] = true;
} else if ((q == points_[0] && p == points_[2]) || (q == points_[2] && p == points_[0])) {
constrained_edge[1] = true;
} else if ((q == points_[1] && p == points_[2]) || (q == points_[2] && p == points_[1])) {
constrained_edge[0] = true;
}
}
// The point counter-clockwise to given point
Point* Triangle::PointCW(const Point& point)
{
if (&point == points_[0]) {
return points_[2];
} else if (&point == points_[1]) {
return points_[0];
} else if (&point == points_[2]) {
return points_[1];
}
assert(0);
return nullptr;
if (&point == points_[0]) {
return points_[2];
} else if (&point == points_[1]) {
return points_[0];
} else if (&point == points_[2]) {
return points_[1];
}
assert(0);
return nullptr;
}
// The point counter-clockwise to given point
Point* Triangle::PointCCW(const Point& point)
{
if (&point == points_[0]) {
return points_[1];
} else if (&point == points_[1]) {
return points_[2];
} else if (&point == points_[2]) {
return points_[0];
}
assert(0);
return nullptr;
if (&point == points_[0]) {
return points_[1];
} else if (&point == points_[1]) {
return points_[2];
} else if (&point == points_[2]) {
return points_[0];
}
assert(0);
return nullptr;
}
// The neighbor across to given point
Triangle* Triangle::NeighborAcross(const Point& point)
{
if (&point == points_[0]) {
return neighbors_[0];
} else if (&point == points_[1]) {
return neighbors_[1];
}
return neighbors_[2];
if (&point == points_[0]) {
return neighbors_[0];
} else if (&point == points_[1]) {
return neighbors_[1];
}
return neighbors_[2];
}
// The neighbor clockwise to given point
Triangle* Triangle::NeighborCW(const Point& point)
{
if (&point == points_[0]) {
return neighbors_[1];
} else if (&point == points_[1]) {
return neighbors_[2];
}
return neighbors_[0];
if (&point == points_[0]) {
return neighbors_[1];
} else if (&point == points_[1]) {
return neighbors_[2];
}
return neighbors_[0];
}
// The neighbor counter-clockwise to given point
Triangle* Triangle::NeighborCCW(const Point& point)
{
if (&point == points_[0]) {
return neighbors_[2];
} else if (&point == points_[1]) {
return neighbors_[0];
}
return neighbors_[1];
if (&point == points_[0]) {
return neighbors_[2];
} else if (&point == points_[1]) {
return neighbors_[0];
}
return neighbors_[1];
}
bool Triangle::GetConstrainedEdgeCCW(const Point& p)
{
if (&p == points_[0]) {
return constrained_edge[2];
} else if (&p == points_[1]) {
return constrained_edge[0];
}
return constrained_edge[1];
if (&p == points_[0]) {
return constrained_edge[2];
} else if (&p == points_[1]) {
return constrained_edge[0];
}
return constrained_edge[1];
}
bool Triangle::GetConstrainedEdgeCW(const Point& p)
{
if (&p == points_[0]) {
return constrained_edge[1];
} else if (&p == points_[1]) {
return constrained_edge[2];
}
return constrained_edge[0];
if (&p == points_[0]) {
return constrained_edge[1];
} else if (&p == points_[1]) {
return constrained_edge[2];
}
return constrained_edge[0];
}
void Triangle::SetConstrainedEdgeCCW(const Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[2] = ce;
} else if (&p == points_[1]) {
constrained_edge[0] = ce;
} else {
constrained_edge[1] = ce;
}
if (&p == points_[0]) {
constrained_edge[2] = ce;
} else if (&p == points_[1]) {
constrained_edge[0] = ce;
} else {
constrained_edge[1] = ce;
}
}
void Triangle::SetConstrainedEdgeCW(const Point& p, bool ce)
{
if (&p == points_[0]) {
constrained_edge[1] = ce;
} else if (&p == points_[1]) {
constrained_edge[2] = ce;
} else {
constrained_edge[0] = ce;
}
if (&p == points_[0]) {
constrained_edge[1] = ce;
} else if (&p == points_[1]) {
constrained_edge[2] = ce;
} else {
constrained_edge[0] = ce;
}
}
bool Triangle::GetDelunayEdgeCCW(const Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[2];
} else if (&p == points_[1]) {
return delaunay_edge[0];
}
return delaunay_edge[1];
if (&p == points_[0]) {
return delaunay_edge[2];
} else if (&p == points_[1]) {
return delaunay_edge[0];
}
return delaunay_edge[1];
}
bool Triangle::GetDelunayEdgeCW(const Point& p)
{
if (&p == points_[0]) {
return delaunay_edge[1];
} else if (&p == points_[1]) {
return delaunay_edge[2];
}
return delaunay_edge[0];
if (&p == points_[0]) {
return delaunay_edge[1];
} else if (&p == points_[1]) {
return delaunay_edge[2];
}
return delaunay_edge[0];
}
void Triangle::SetDelunayEdgeCCW(const Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[2] = e;
} else if (&p == points_[1]) {
delaunay_edge[0] = e;
} else {
delaunay_edge[1] = e;
}
if (&p == points_[0]) {
delaunay_edge[2] = e;
} else if (&p == points_[1]) {
delaunay_edge[0] = e;
} else {
delaunay_edge[1] = e;
}
}
void Triangle::SetDelunayEdgeCW(const Point& p, bool e)
{
if (&p == points_[0]) {
delaunay_edge[1] = e;
} else if (&p == points_[1]) {
delaunay_edge[2] = e;
} else {
delaunay_edge[0] = e;
}
if (&p == points_[0]) {
delaunay_edge[1] = e;
} else if (&p == points_[1]) {
delaunay_edge[2] = e;
} else {
delaunay_edge[0] = e;
}
}
void Triangle::DebugPrint()
{
std::cout << *points_[0] << " " << *points_[1] << " " << *points_[2] << std::endl;
std::cout << *points_[0] << " " << *points_[1] << " " << *points_[2] << std::endl;
}
bool Triangle::CircumcicleContains(const Point& point) const
{
assert(IsCounterClockwise());
const double dx = points_[0]->x - point.x;
const double dy = points_[0]->y - point.y;
const double ex = points_[1]->x - point.x;
const double ey = points_[1]->y - point.y;
const double fx = points_[2]->x - point.x;
const double fy = points_[2]->y - point.y;
assert(IsCounterClockwise());
const double dx = points_[0]->x - point.x;
const double dy = points_[0]->y - point.y;
const double ex = points_[1]->x - point.x;
const double ey = points_[1]->y - point.y;
const double fx = points_[2]->x - point.x;
const double fy = points_[2]->y - point.y;
const double ap = dx * dx + dy * dy;
const double bp = ex * ex + ey * ey;
const double cp = fx * fx + fy * fy;
const double ap = dx * dx + dy * dy;
const double bp = ex * ex + ey * ey;
const double cp = fx * fx + fy * fy;
return (dx * (fy * bp - cp * ey) - dy * (fx * bp - cp * ex) + ap * (fx * ey - fy * ex)) < 0;
return (dx * (fy * bp - cp * ey) - dy * (fx * bp - cp * ex) + ap * (fx * ey - fy * ex)) < 0;
}
bool Triangle::IsCounterClockwise() const
{
return (points_[1]->x - points_[0]->x) * (points_[2]->y - points_[0]->y) -
(points_[2]->x - points_[0]->x) * (points_[1]->y - points_[0]->y) >
0;
return (points_[1]->x - points_[0]->x) * (points_[2]->y - points_[0]->y) -
(points_[2]->x - points_[0]->x) * (points_[1]->y - points_[0]->y) >
0;
}
bool IsDelaunay(const std::vector<p2t::Triangle*>& triangles)
{
for (const auto triangle : triangles) {
for (const auto other : triangles) {
if (triangle == other) {
continue;
}
for (int i = 0; i < 3; ++i) {
if (triangle->CircumcicleContains(*other->GetPoint(i))) {
return false;
for (const auto triangle : triangles) {
for (const auto other : triangles) {
if (triangle == other) {
continue;
}
for (int i = 0; i < 3; ++i) {
if (triangle->CircumcicleContains(*other->GetPoint(i))) {
return false;
}
}
}
}
}
}
return true;
return true;
}
}
} // namespace p2t

View File

@ -29,9 +29,9 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Include guard
#ifndef SHAPES_H
#define SHAPES_H
#pragma once
#include "dll_symbol.h"
#include <cmath>
#include <cstddef>
@ -42,290 +42,288 @@ namespace p2t {
struct Edge;
struct Point {
struct P2T_DLL_SYMBOL Point {
double x, y;
double x, y;
/// Default constructor does nothing (for performance).
Point()
{
x = 0.0;
y = 0.0;
}
/// Default constructor does nothing (for performance).
Point()
{
x = 0.0;
y = 0.0;
}
/// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list;
/// The edges this point constitutes an upper ending point
std::vector<Edge*> edge_list;
/// Construct using coordinates.
Point(double x, double y);
/// Construct using coordinates.
Point(double x, double y);
/// Set this point to all zeros.
void set_zero()
{
x = 0.0;
y = 0.0;
}
/// Set this point to all zeros.
void set_zero()
{
x = 0.0;
y = 0.0;
}
/// Set this point to some specified coordinates.
void set(double x_, double y_)
{
x = x_;
y = y_;
}
/// Set this point to some specified coordinates.
void set(double x_, double y_)
{
x = x_;
y = y_;
}
/// Negate this point.
Point operator -() const
{
Point v;
v.set(-x, -y);
return v;
}
/// Negate this point.
Point operator -() const
{
Point v;
v.set(-x, -y);
return v;
}
/// Add a point to this point.
void operator +=(const Point& v)
{
x += v.x;
y += v.y;
}
/// Add a point to this point.
void operator +=(const Point& v)
{
x += v.x;
y += v.y;
}
/// Subtract a point from this point.
void operator -=(const Point& v)
{
x -= v.x;
y -= v.y;
}
/// Subtract a point from this point.
void operator -=(const Point& v)
{
x -= v.x;
y -= v.y;
}
/// Multiply this point by a scalar.
void operator *=(double a)
{
x *= a;
y *= a;
}
/// Multiply this point by a scalar.
void operator *=(double a)
{
x *= a;
y *= a;
}
/// Get the length of this point (the norm).
double Length() const
{
return sqrt(x * x + y * y);
}
/// Get the length of this point (the norm).
double Length() const
{
return sqrt(x * x + y * y);
}
/// Convert this point into a unit point. Returns the Length.
double Normalize()
{
const double len = Length();
x /= len;
y /= len;
return len;
}
/// Convert this point into a unit point. Returns the Length.
double Normalize()
{
const double len = Length();
x /= len;
y /= len;
return len;
}
};
std::ostream& operator<<(std::ostream&, const Point&);
P2T_DLL_SYMBOL std::ostream& operator<<(std::ostream&, const Point&);
// Represents a simple polygon's edge
struct Edge {
struct P2T_DLL_SYMBOL Edge {
Point* p, *q;
Point* p, *q;
/// Constructor
Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
{
if (p1.y > p2.y) {
q = &p1;
p = &p2;
} else if (p1.y == p2.y) {
if (p1.x > p2.x) {
q = &p1;
p = &p2;
} else if (p1.x == p2.x) {
// Repeat points
throw std::runtime_error("Edge::Edge: p1 == p2");
}
/// Constructor
Edge(Point& p1, Point& p2) : p(&p1), q(&p2)
{
if (p1.y > p2.y) {
q = &p1;
p = &p2;
} else if (p1.y == p2.y) {
if (p1.x > p2.x) {
q = &p1;
p = &p2;
} else if (p1.x == p2.x) {
// Repeat points
throw std::runtime_error("Edge::Edge: p1 == p2");
}
}
q->edge_list.push_back(this);
}
q->edge_list.push_back(this);
}
};
// Triangle-based data structures are know to have better performance than quad-edge structures
// See: J. Shewchuk, "Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator"
// "Triangulations in CGAL"
class Triangle {
class P2T_DLL_SYMBOL Triangle {
public:
/// Constructor
Triangle(Point& a, Point& b, Point& c);
/// Constructor
Triangle(Point& a, Point& b, Point& c);
/// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3];
/// Flags to determine if an edge is a Constrained edge
bool constrained_edge[3];
/// Flags to determine if an edge is a Delauney edge
bool delaunay_edge[3];
Point* GetPoint(int index);
Point* PointCW(const Point& point);
Point* PointCCW(const Point& point);
Point* OppositePoint(Triangle& t, const Point& p);
Point* GetPoint(int index);
Point* PointCW(const Point& point);
Point* PointCCW(const Point& point);
Point* OppositePoint(Triangle& t, const Point& p);
Triangle* GetNeighbor(int index);
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
void MarkNeighbor(Triangle& t);
Triangle* GetNeighbor(int index);
void MarkNeighbor(Point* p1, Point* p2, Triangle* t);
void MarkNeighbor(Triangle& t);
void MarkConstrainedEdge(int index);
void MarkConstrainedEdge(Edge& edge);
void MarkConstrainedEdge(Point* p, Point* q);
void MarkConstrainedEdge(int index);
void MarkConstrainedEdge(Edge& edge);
void MarkConstrainedEdge(Point* p, Point* q);
int Index(const Point* p);
int EdgeIndex(const Point* p1, const Point* p2);
int Index(const Point* p);
int EdgeIndex(const Point* p1, const Point* p2);
Triangle* NeighborAcross(const Point& point);
Triangle* NeighborCW(const Point& point);
Triangle* NeighborCCW(const Point& point);
bool GetConstrainedEdgeCCW(const Point& p);
bool GetConstrainedEdgeCW(const Point& p);
void SetConstrainedEdgeCCW(const Point& p, bool ce);
void SetConstrainedEdgeCW(const Point& p, bool ce);
bool GetDelunayEdgeCCW(const Point& p);
bool GetDelunayEdgeCW(const Point& p);
void SetDelunayEdgeCCW(const Point& p, bool e);
void SetDelunayEdgeCW(const Point& p, bool e);
Triangle* NeighborAcross(const Point& point);
Triangle* NeighborCW(const Point& point);
Triangle* NeighborCCW(const Point& point);
bool GetConstrainedEdgeCCW(const Point& p);
bool GetConstrainedEdgeCW(const Point& p);
void SetConstrainedEdgeCCW(const Point& p, bool ce);
void SetConstrainedEdgeCW(const Point& p, bool ce);
bool GetDelunayEdgeCCW(const Point& p);
bool GetDelunayEdgeCW(const Point& p);
void SetDelunayEdgeCCW(const Point& p, bool e);
void SetDelunayEdgeCW(const Point& p, bool e);
bool Contains(const Point* p);
bool Contains(const Edge& e);
bool Contains(const Point* p, const Point* q);
void Legalize(Point& point);
void Legalize(Point& opoint, Point& npoint);
/**
bool Contains(const Point* p);
bool Contains(const Edge& e);
bool Contains(const Point* p, const Point* q);
void Legalize(Point& point);
void Legalize(Point& opoint, Point& npoint);
/**
* Clears all references to all other triangles and points
*/
void Clear();
void ClearNeighbor(const Triangle *triangle);
void ClearNeighbors();
void ClearDelunayEdges();
void Clear();
void ClearNeighbor(const Triangle *triangle);
void ClearNeighbors();
void ClearDelunayEdges();
inline bool IsInterior();
inline void IsInterior(bool b);
inline bool IsInterior();
inline void IsInterior(bool b);
void DebugPrint();
void DebugPrint();
bool CircumcicleContains(const Point&) const;
bool CircumcicleContains(const Point&) const;
private:
bool IsCounterClockwise() const;
bool IsCounterClockwise() const;
/// Triangle points
Point* points_[3];
/// Neighbor list
Triangle* neighbors_[3];
/// Triangle points
Point* points_[3];
/// Neighbor list
Triangle* neighbors_[3];
/// Has this triangle been marked as an interior triangle?
bool interior_;
/// Has this triangle been marked as an interior triangle?
bool interior_;
};
inline bool cmp(const Point* a, const Point* b)
{
if (a->y < b->y) {
return true;
} else if (a->y == b->y) {
// Make sure q is point with greater x value
if (a->x < b->x) {
return true;
if (a->y < b->y) {
return true;
} else if (a->y == b->y) {
// Make sure q is point with greater x value
if (a->x < b->x) {
return true;
}
}
}
return false;
return false;
}
/// Add two points_ component-wise.
inline Point operator +(const Point& a, const Point& b)
{
return Point(a.x + b.x, a.y + b.y);
return Point(a.x + b.x, a.y + b.y);
}
/// Subtract two points_ component-wise.
inline Point operator -(const Point& a, const Point& b)
{
return Point(a.x - b.x, a.y - b.y);
return Point(a.x - b.x, a.y - b.y);
}
/// Multiply point by scalar
inline Point operator *(double s, const Point& a)
{
return Point(s * a.x, s * a.y);
return Point(s * a.x, s * a.y);
}
inline bool operator ==(const Point& a, const Point& b)
{
return a.x == b.x && a.y == b.y;
return a.x == b.x && a.y == b.y;
}
inline bool operator !=(const Point& a, const Point& b)
{
return !(a.x == b.x) || !(a.y == b.y);
return !(a.x == b.x) || !(a.y == b.y);
}
/// Peform the dot product on two vectors.
inline double Dot(const Point& a, const Point& b)
{
return a.x * b.x + a.y * b.y;
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline double Cross(const Point& a, const Point& b)
{
return a.x * b.y - a.y * b.x;
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a point and a scalar. In 2D this produces
/// a point.
inline Point Cross(const Point& a, double s)
{
return Point(s * a.y, -s * a.x);
return Point(s * a.y, -s * a.x);
}
/// Perform the cross product on a scalar and a point. In 2D this produces
/// a point.
inline Point Cross(double s, const Point& a)
{
return Point(-s * a.y, s * a.x);
return Point(-s * a.y, s * a.x);
}
inline Point* Triangle::GetPoint(int index)
{
return points_[index];
return points_[index];
}
inline Triangle* Triangle::GetNeighbor(int index)
{
return neighbors_[index];
return neighbors_[index];
}
inline bool Triangle::Contains(const Point* p)
{
return p == points_[0] || p == points_[1] || p == points_[2];
return p == points_[0] || p == points_[1] || p == points_[2];
}
inline bool Triangle::Contains(const Edge& e)
{
return Contains(e.p) && Contains(e.q);
return Contains(e.p) && Contains(e.q);
}
inline bool Triangle::Contains(const Point* p, const Point* q)
{
return Contains(p) && Contains(q);
return Contains(p) && Contains(q);
}
inline bool Triangle::IsInterior()
{
return interior_;
return interior_;
}
inline void Triangle::IsInterior(bool b)
{
interior_ = b;
interior_ = b;
}
/// Is this set a valid delaunay triangulation?
bool IsDelaunay(const std::vector<p2t::Triangle*>&);
P2T_DLL_SYMBOL bool IsDelaunay(const std::vector<p2t::Triangle*>&);
}
#endif

View File

@ -29,13 +29,10 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef UTILS_H
#define UTILS_H
#pragma once
// Otherwise #defines like M_PI are undeclared under Visual Studio
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#include "shapes.h"
@ -67,15 +64,19 @@ enum Orientation { CW, CCW, COLLINEAR };
*/
Orientation Orient2d(const Point& pa, const Point& pb, const Point& pc)
{
double detleft = (pa.x - pc.x) * (pb.y - pc.y);
double detright = (pa.y - pc.y) * (pb.x - pc.x);
double val = detleft - detright;
if (val > -EPSILON && val < EPSILON) {
return COLLINEAR;
} else if (val > 0) {
return CCW;
}
return CW;
double detleft = (pa.x - pc.x) * (pb.y - pc.y);
double detright = (pa.y - pc.y) * (pb.x - pc.x);
double val = detleft - detright;
// Using a tolerance here fails on concave-by-subepsilon boundaries
// if (val > -EPSILON && val < EPSILON) {
// Using == on double makes -Wfloat-equal warnings yell at us
if (std::fpclassify(val) == FP_ZERO) {
return COLLINEAR;
} else if (val > 0) {
return CCW;
}
return CW;
}
/*
@ -114,18 +115,16 @@ bool InScanArea(Point& pa, Point& pb, Point& pc, Point& pd)
bool InScanArea(const Point& pa, const Point& pb, const Point& pc, const Point& pd)
{
double oadb = (pa.x - pb.x)*(pd.y - pb.y) - (pd.x - pb.x)*(pa.y - pb.y);
if (oadb >= -EPSILON) {
return false;
}
double oadb = (pa.x - pb.x)*(pd.y - pb.y) - (pd.x - pb.x)*(pa.y - pb.y);
if (oadb >= -EPSILON) {
return false;
}
double oadc = (pa.x - pc.x)*(pd.y - pc.y) - (pd.x - pc.x)*(pa.y - pc.y);
if (oadc <= EPSILON) {
return false;
}
return true;
double oadc = (pa.x - pc.x)*(pd.y - pc.y) - (pd.x - pc.x)*(pa.y - pc.y);
if (oadc <= EPSILON) {
return false;
}
return true;
}
}
#endif

View File

@ -36,75 +36,75 @@ namespace p2t {
AdvancingFront::AdvancingFront(Node& head, Node& tail)
{
head_ = &head;
tail_ = &tail;
search_node_ = &head;
head_ = &head;
tail_ = &tail;
search_node_ = &head;
}
Node* AdvancingFront::LocateNode(double x)
{
Node* node = search_node_;
Node* node = search_node_;
if (x < node->value) {
while ((node = node->prev) != nullptr) {
if (x >= node->value) {
search_node_ = node;
return node;
}
if (x < node->value) {
while ((node = node->prev) != nullptr) {
if (x >= node->value) {
search_node_ = node;
return node;
}
}
} else {
while ((node = node->next) != nullptr) {
if (x < node->value) {
search_node_ = node->prev;
return node->prev;
}
}
}
} else {
while ((node = node->next) != nullptr) {
if (x < node->value) {
search_node_ = node->prev;
return node->prev;
}
}
}
return nullptr;
return nullptr;
}
Node* AdvancingFront::FindSearchNode(double x)
{
(void)x; // suppress compiler warnings "unused parameter 'x'"
// TODO: implement BST index
return search_node_;
(void)x; // suppress compiler warnings "unused parameter 'x'"
// TODO: implement BST index
return search_node_;
}
Node* AdvancingFront::LocatePoint(const Point* point)
{
const double px = point->x;
Node* node = FindSearchNode(px);
const double nx = node->point->x;
const double px = point->x;
Node* node = FindSearchNode(px);
const double nx = node->point->x;
if (px == nx) {
if (point != node->point) {
// We might have two nodes with same x value for a short time
if (point == node->prev->point) {
node = node->prev;
} else if (point == node->next->point) {
node = node->next;
} else {
assert(0);
}
if (px == nx) {
if (point != node->point) {
// We might have two nodes with same x value for a short time
if (point == node->prev->point) {
node = node->prev;
} else if (point == node->next->point) {
node = node->next;
} else {
assert(0);
}
}
} else if (px < nx) {
while ((node = node->prev) != nullptr) {
if (point == node->point) {
break;
}
}
} else {
while ((node = node->next) != nullptr) {
if (point == node->point)
break;
}
}
} else if (px < nx) {
while ((node = node->prev) != nullptr) {
if (point == node->point) {
break;
}
}
} else {
while ((node = node->next) != nullptr) {
if (point == node->point)
break;
}
}
if(node) search_node_ = node;
return node;
if(node) search_node_ = node;
return node;
}
AdvancingFront::~AdvancingFront()
{
}
}
} // namespace p2t

View File

@ -29,8 +29,7 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ADVANCED_FRONT_H
#define ADVANCED_FRONT_H
#pragma once
#include "../common/shapes.h"
@ -40,21 +39,21 @@ struct Node;
// Advancing front node
struct Node {
Point* point;
Triangle* triangle;
Point* point;
Triangle* triangle;
Node* next;
Node* prev;
Node* next;
Node* prev;
double value;
double value;
Node(Point& p) : point(&p), triangle(NULL), next(NULL), prev(NULL), value(p.x)
{
}
Node(Point& p) : point(&p), triangle(NULL), next(NULL), prev(NULL), value(p.x)
{
}
Node(Point& p, Triangle& t) : point(&p), triangle(&t), next(NULL), prev(NULL), value(p.x)
{
}
Node(Point& p, Triangle& t) : point(&p), triangle(&t), next(NULL), prev(NULL), value(p.x)
{
}
};
@ -62,57 +61,55 @@ struct Node {
class AdvancingFront {
public:
AdvancingFront(Node& head, Node& tail);
// Destructor
~AdvancingFront();
AdvancingFront(Node& head, Node& tail);
// Destructor
~AdvancingFront();
Node* head();
void set_head(Node* node);
Node* tail();
void set_tail(Node* node);
Node* search();
void set_search(Node* node);
Node* head();
void set_head(Node* node);
Node* tail();
void set_tail(Node* node);
Node* search();
void set_search(Node* node);
/// Locate insertion point along advancing front
Node* LocateNode(double x);
/// Locate insertion point along advancing front
Node* LocateNode(double x);
Node* LocatePoint(const Point* point);
Node* LocatePoint(const Point* point);
private:
Node* head_, *tail_, *search_node_;
Node* head_, *tail_, *search_node_;
Node* FindSearchNode(double x);
Node* FindSearchNode(double x);
};
inline Node* AdvancingFront::head()
{
return head_;
return head_;
}
inline void AdvancingFront::set_head(Node* node)
{
head_ = node;
head_ = node;
}
inline Node* AdvancingFront::tail()
{
return tail_;
return tail_;
}
inline void AdvancingFront::set_tail(Node* node)
{
tail_ = node;
tail_ = node;
}
inline Node* AdvancingFront::search()
{
return search_node_;
return search_node_;
}
inline void AdvancingFront::set_search(Node* node)
{
search_node_ = node;
search_node_ = node;
}
}
#endif

View File

@ -34,38 +34,38 @@ namespace p2t {
CDT::CDT(const std::vector<Point*>& polyline)
{
sweep_context_ = new SweepContext(polyline);
sweep_ = new Sweep;
sweep_context_ = new SweepContext(polyline);
sweep_ = new Sweep;
}
void CDT::AddHole(const std::vector<Point*>& polyline)
{
sweep_context_->AddHole(polyline);
sweep_context_->AddHole(polyline);
}
void CDT::AddPoint(Point* point) {
sweep_context_->AddPoint(point);
sweep_context_->AddPoint(point);
}
void CDT::Triangulate()
{
sweep_->Triangulate(*sweep_context_);
sweep_->Triangulate(*sweep_context_);
}
std::vector<p2t::Triangle*> CDT::GetTriangles()
{
return sweep_context_->GetTriangles();
return sweep_context_->GetTriangles();
}
std::list<p2t::Triangle*> CDT::GetMap()
{
return sweep_context_->GetMap();
return sweep_context_->GetMap();
}
CDT::~CDT()
{
delete sweep_context_;
delete sweep_;
delete sweep_context_;
delete sweep_;
}
} // namespace p2t

View File

@ -29,13 +29,14 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CDT_H
#define CDT_H
#pragma once
#include "advancing_front.h"
#include "sweep_context.h"
#include "sweep.h"
#include "../common/dll_symbol.h"
/**
*
* @author Mason Green <mason.green@gmail.com>
@ -44,62 +45,60 @@
namespace p2t {
class CDT
class P2T_DLL_SYMBOL CDT
{
public:
/**
/**
* Constructor - add polyline with non repeating points
*
* @param polyline
*/
CDT(const std::vector<Point*>& polyline);
CDT(const std::vector<Point*>& polyline);
/**
/**
* Destructor - clean up memory
*/
~CDT();
~CDT();
/**
/**
* Add a hole
*
* @param polyline
*/
void AddHole(const std::vector<Point*>& polyline);
void AddHole(const std::vector<Point*>& polyline);
/**
/**
* Add a steiner point
*
* @param point
*/
void AddPoint(Point* point);
void AddPoint(Point* point);
/**
/**
* Triangulate - do this AFTER you've added the polyline, holes, and Steiner points
*/
void Triangulate();
void Triangulate();
/**
/**
* Get CDT triangles
*/
std::vector<Triangle*> GetTriangles();
std::vector<Triangle*> GetTriangles();
/**
/**
* Get triangle map
*/
std::list<Triangle*> GetMap();
std::list<Triangle*> GetMap();
private:
private:
/**
/**
* Internals
*/
SweepContext* sweep_context_;
Sweep* sweep_;
SweepContext* sweep_context_;
Sweep* sweep_;
};
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -36,8 +36,7 @@
* "FlipScan" Constrained Edge Algorithm invented by Thomas Åhlén, thahlen@gmail.com
*/
#ifndef SWEEP_H
#define SWEEP_H
#pragma once
#include <vector>
@ -53,28 +52,28 @@ class Sweep
{
public:
/**
/**
* Triangulate
*
* @param tcx
*/
void Triangulate(SweepContext& tcx);
void Triangulate(SweepContext& tcx);
/**
/**
* Destructor - clean up memory
*/
~Sweep();
~Sweep();
private:
/**
/**
* Start sweeping the Y-sorted point set from bottom to top
*
* @param tcx
*/
void SweepPoints(SweepContext& tcx);
void SweepPoints(SweepContext& tcx);
/**
/**
* Find closes node to the left of the new point and
* create a new triangle. If needed new holes and basins
* will be filled to.
@ -83,20 +82,20 @@ private:
* @param point
* @return
*/
Node& PointEvent(SweepContext& tcx, Point& point);
Node& PointEvent(SweepContext& tcx, Point& point);
/**
/**
*
*
* @param tcx
* @param edge
* @param node
*/
void EdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void EdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
void EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point);
/**
/**
* Creates a new front triangle and legalize it
*
* @param tcx
@ -104,21 +103,21 @@ private:
* @param node
* @return
*/
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
Node& NewFrontTriangle(SweepContext& tcx, Point& point, Node& node);
/**
/**
* Adds a triangle to the advancing front to fill a hole.
* @param tcx
* @param node - middle node, that is the bottom of the hole
*/
void Fill(SweepContext& tcx, Node& node);
void Fill(SweepContext& tcx, Node& node);
/**
/**
* Returns true if triangle was legalized
*/
bool Legalize(SweepContext& tcx, Triangle& t);
bool Legalize(SweepContext& tcx, Triangle& t);
/**
/**
* <b>Requirement</b>:<br>
* 1. a,b and c form a triangle.<br>
* 2. a and d is know to be on opposite side of bc<br>
@ -142,9 +141,9 @@ private:
* @param d - point opposite a
* @return true if d is inside circle, false if on circle edge
*/
bool Incircle(const Point& pa, const Point& pb, const Point& pc, const Point& pd) const;
bool Incircle(const Point& pa, const Point& pb, const Point& pc, const Point& pd) const;
/**
/**
* Rotates a triangle pair one vertex CW
*<pre>
* n2 n2
@ -158,37 +157,38 @@ private:
* n4 n4
* </pre>
*/
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op) const;
void RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op) const;
/**
/**
* Fills holes in the Advancing Front
*
*
* @param tcx
* @param n
*/
void FillAdvancingFront(SweepContext& tcx, Node& n);
void FillAdvancingFront(SweepContext& tcx, Node& n);
// Decision-making about when to Fill hole.
// Contributed by ToolmakerSteve2
bool LargeHole_DontFill(const Node* node) const;
bool AngleExceeds90Degrees(const Point* origin, const Point* pa, const Point* pb) const;
bool AngleExceedsPlus90DegreesOrIsNegative(const Point* origin, const Point* pa, const Point* pb) const;
double Angle(const Point* origin, const Point* pa, const Point* pb) const;
// Decision-making about when to Fill hole.
// Contributed by ToolmakerSteve2
bool LargeHole_DontFill(const Node* node) const;
bool AngleIsNegative(const Point* origin, const Point* pa, const Point* pb) const;
bool AngleExceeds90Degrees(const Point* origin, const Point* pa, const Point* pb) const;
bool AngleExceedsPlus90DegreesOrIsNegative(const Point* origin, const Point* pa, const Point* pb) const;
double Angle(const Point* origin, const Point* pa, const Point* pb) const;
/**
/**
*
* @param node - middle node
* @return the angle between 3 front nodes
*/
double HoleAngle(const Node& node) const;
double HoleAngle(const Node& node) const;
/**
/**
* The basin angle is decided against the horizontal line [1,0]
*/
double BasinAngle(const Node& node) const;
double BasinAngle(const Node& node) const;
/**
/**
* Fills a basin that has formed on the Advancing Front to the right
* of given node.<br>
* First we decide a left,bottom and right node that forms the
@ -197,42 +197,42 @@ private:
* @param tcx
* @param node - starting node, this or next node will be left node
*/
void FillBasin(SweepContext& tcx, Node& node);
void FillBasin(SweepContext& tcx, Node& node);
/**
/**
* Recursive algorithm to fill a Basin with triangles
*
* @param tcx
* @param node - bottom_node
* @param cnt - counter used to alternate on even and odd numbers
*/
void FillBasinReq(SweepContext& tcx, Node* node);
void FillBasinReq(SweepContext& tcx, Node* node);
bool IsShallow(SweepContext& tcx, Node& node);
bool IsShallow(SweepContext& tcx, Node& node);
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
bool IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq);
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node);
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node);
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p);
void FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p);
/**
/**
* After a flip we have two triangles and know that only one will still be
* intersecting the edge. So decide which to contiune with and legalize the other
*
@ -244,9 +244,9 @@ private:
* @param op - another point shared by both triangles
* @return returns the triangle still intersecting the edge
*/
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
Triangle& NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op);
/**
/**
* When we need to traverse from one triangle to the next we need
* the point in current triangle that is the opposite point to the next
* triangle.
@ -257,9 +257,9 @@ private:
* @param op
* @return
*/
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op);
Point& NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op);
/**
/**
* Scan part of the FlipScan algorithm<br>
* When a triangle pair isn't flippable we will scan for the next
* point that is inside the flip triangle scan area. When found
@ -272,14 +272,12 @@ private:
* @param t
* @param p
*/
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
void FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle, Triangle& t, Point& p);
void FinalizationPolygon(SweepContext& tcx);
void FinalizationPolygon(SweepContext& tcx);
std::vector<Node*> nodes_;
std::vector<Node*> nodes_;
};
}
#endif

View File

@ -1,5 +1,5 @@
/*
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* Poly2Tri Copyright (c) 2009-2022, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
@ -34,152 +34,152 @@
namespace p2t {
SweepContext::SweepContext(const std::vector<Point*>& polyline) : points_(polyline),
front_(nullptr),
head_(nullptr),
tail_(nullptr),
af_head_(nullptr),
af_middle_(nullptr),
af_tail_(nullptr)
SweepContext::SweepContext(std::vector<Point*> polyline) : points_(std::move(polyline)),
front_(nullptr),
head_(nullptr),
tail_(nullptr),
af_head_(nullptr),
af_middle_(nullptr),
af_tail_(nullptr)
{
InitEdges(points_);
InitEdges(points_);
}
void SweepContext::AddHole(const std::vector<Point*>& polyline)
{
InitEdges(polyline);
for(unsigned int i = 0; i < polyline.size(); i++) {
points_.push_back(polyline[i]);
}
InitEdges(polyline);
for (auto i : polyline) {
points_.push_back(i);
}
}
void SweepContext::AddPoint(Point* point) {
points_.push_back(point);
points_.push_back(point);
}
std::vector<Triangle*> &SweepContext::GetTriangles()
{
return triangles_;
return triangles_;
}
std::list<Triangle*> &SweepContext::GetMap()
{
return map_;
return map_;
}
void SweepContext::InitTriangulation()
{
double xmax(points_[0]->x), xmin(points_[0]->x);
double ymax(points_[0]->y), ymin(points_[0]->y);
double xmax(points_[0]->x), xmin(points_[0]->x);
double ymax(points_[0]->y), ymin(points_[0]->y);
// Calculate bounds.
for (unsigned int i = 0; i < points_.size(); i++) {
Point& p = *points_[i];
if (p.x > xmax)
xmax = p.x;
if (p.x < xmin)
xmin = p.x;
if (p.y > ymax)
ymax = p.y;
if (p.y < ymin)
ymin = p.y;
}
// Calculate bounds.
for (auto& point : points_) {
Point& p = *point;
if (p.x > xmax)
xmax = p.x;
if (p.x < xmin)
xmin = p.x;
if (p.y > ymax)
ymax = p.y;
if (p.y < ymin)
ymin = p.y;
}
double dx = kAlpha * (xmax - xmin);
double dy = kAlpha * (ymax - ymin);
head_ = new Point(xmin - dx, ymin - dy);
tail_ = new Point(xmax + dx, ymin - dy);
double dx = kAlpha * (xmax - xmin);
double dy = kAlpha * (ymax - ymin);
head_ = new Point(xmin - dx, ymin - dy);
tail_ = new Point(xmax + dx, ymin - dy);
// Sort points along y-axis
std::sort(points_.begin(), points_.end(), cmp);
// Sort points along y-axis
std::sort(points_.begin(), points_.end(), cmp);
}
void SweepContext::InitEdges(const std::vector<Point*>& polyline)
{
size_t num_points = polyline.size();
for (size_t i = 0; i < num_points; i++) {
size_t j = i < num_points - 1 ? i + 1 : 0;
edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
}
size_t num_points = polyline.size();
for (size_t i = 0; i < num_points; i++) {
size_t j = i < num_points - 1 ? i + 1 : 0;
edge_list.push_back(new Edge(*polyline[i], *polyline[j]));
}
}
Point* SweepContext::GetPoint(size_t index)
{
return points_[index];
return points_[index];
}
void SweepContext::AddToMap(Triangle* triangle)
{
map_.push_back(triangle);
map_.push_back(triangle);
}
Node* SweepContext::LocateNode(const Point& point)
{
// TODO implement search tree
return front_->LocateNode(point.x);
// TODO implement search tree
return front_->LocateNode(point.x);
}
void SweepContext::CreateAdvancingFront()
{
// Initial triangle
Triangle* triangle = new Triangle(*points_[0], *head_, *tail_);
// Initial triangle
Triangle* triangle = new Triangle(*points_[0], *head_, *tail_);
map_.push_back(triangle);
map_.push_back(triangle);
af_head_ = new Node(*triangle->GetPoint(1), *triangle);
af_middle_ = new Node(*triangle->GetPoint(0), *triangle);
af_tail_ = new Node(*triangle->GetPoint(2));
front_ = new AdvancingFront(*af_head_, *af_tail_);
af_head_ = new Node(*triangle->GetPoint(1), *triangle);
af_middle_ = new Node(*triangle->GetPoint(0), *triangle);
af_tail_ = new Node(*triangle->GetPoint(2));
front_ = new AdvancingFront(*af_head_, *af_tail_);
// TODO: More intuitive if head is middles next and not previous?
// so swap head and tail
af_head_->next = af_middle_;
af_middle_->next = af_tail_;
af_middle_->prev = af_head_;
af_tail_->prev = af_middle_;
// TODO: More intuitive if head is middles next and not previous?
// so swap head and tail
af_head_->next = af_middle_;
af_middle_->next = af_tail_;
af_middle_->prev = af_head_;
af_tail_->prev = af_middle_;
}
void SweepContext::RemoveNode(Node* node)
{
delete node;
delete node;
}
void SweepContext::MapTriangleToNodes(Triangle& t)
{
for (int i = 0; i < 3; i++) {
if (!t.GetNeighbor(i)) {
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
if (n)
n->triangle = &t;
for (int i = 0; i < 3; i++) {
if (!t.GetNeighbor(i)) {
Node* n = front_->LocatePoint(t.PointCW(*t.GetPoint(i)));
if (n)
n->triangle = &t;
}
}
}
}
void SweepContext::RemoveFromMap(Triangle* triangle)
{
map_.remove(triangle);
map_.remove(triangle);
}
void SweepContext::MeshClean(Triangle& triangle)
{
std::vector<Triangle *> triangles;
triangles.push_back(&triangle);
std::vector<Triangle *> triangles;
triangles.push_back(&triangle);
while(!triangles.empty()){
Triangle *t = triangles.back();
triangles.pop_back();
while(!triangles.empty()){
Triangle *t = triangles.back();
triangles.pop_back();
if (t != nullptr && !t->IsInterior()) {
t->IsInterior(true);
triangles_.push_back(t);
for (int i = 0; i < 3; i++) {
if (!t->constrained_edge[i])
triangles.push_back(t->GetNeighbor(i));
}
if (t != nullptr && !t->IsInterior()) {
t->IsInterior(true);
triangles_.push_back(t);
for (int i = 0; i < 3; i++) {
if (!t->constrained_edge[i])
triangles.push_back(t->GetNeighbor(i));
}
}
}
}
}
SweepContext::~SweepContext()
@ -194,17 +194,13 @@ SweepContext::~SweepContext()
delete af_middle_;
delete af_tail_;
typedef std::list<Triangle*> type_list;
for(type_list::iterator iter = map_.begin(); iter != map_.end(); ++iter) {
Triangle* ptr = *iter;
for (auto ptr : map_) {
delete ptr;
}
for(unsigned int i = 0; i < edge_list.size(); i++) {
delete edge_list[i];
for (auto& i : edge_list) {
delete i;
}
}
} // namespace p2t

View File

@ -1,5 +1,5 @@
/*
* Poly2Tri Copyright (c) 2009-2018, Poly2Tri Contributors
* Poly2Tri Copyright (c) 2009-2022, Poly2Tri Contributors
* https://github.com/jhasse/poly2tri
*
* All rights reserved.
@ -29,8 +29,7 @@
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SWEEP_CONTEXT_H
#define SWEEP_CONTEXT_H
#pragma once
#include <list>
#include <vector>
@ -51,136 +50,135 @@ class AdvancingFront;
class SweepContext {
public:
/// Constructor
SweepContext(const std::vector<Point*>& polyline);
/// Destructor
~SweepContext();
/// Constructor
explicit SweepContext(std::vector<Point*> polyline);
/// Destructor
~SweepContext();
void set_head(Point* p1);
void set_head(Point* p1);
Point* head() const;
Point* head() const;
void set_tail(Point* p1);
void set_tail(Point* p1);
Point* tail() const;
Point* tail() const;
size_t point_count() const;
size_t point_count() const;
Node* LocateNode(const Point& point);
Node* LocateNode(const Point& point);
void RemoveNode(Node* node);
void RemoveNode(Node* node);
void CreateAdvancingFront();
void CreateAdvancingFront();
/// Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);
/// Try to map a node to all sides of this triangle that don't have a neighbor
void MapTriangleToNodes(Triangle& t);
void AddToMap(Triangle* triangle);
void AddToMap(Triangle* triangle);
Point* GetPoint(size_t index);
Point* GetPoint(size_t index);
Point* GetPoints();
Point* GetPoints();
void RemoveFromMap(Triangle* triangle);
void RemoveFromMap(Triangle* triangle);
void AddHole(const std::vector<Point*>& polyline);
void AddHole(const std::vector<Point*>& polyline);
void AddPoint(Point* point);
void AddPoint(Point* point);
AdvancingFront* front() const;
AdvancingFront* front() const;
void MeshClean(Triangle& triangle);
void MeshClean(Triangle& triangle);
std::vector<Triangle*> &GetTriangles();
std::list<Triangle*> &GetMap();
std::vector<Triangle*> &GetTriangles();
std::list<Triangle*> &GetMap();
std::vector<Edge*> edge_list;
std::vector<Edge*> edge_list;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
struct Basin {
Node* left_node;
Node* bottom_node;
Node* right_node;
double width;
bool left_highest;
Basin() : left_node(NULL), bottom_node(NULL), right_node(NULL), width(0.0), left_highest(false)
{
}
Basin()
: left_node(nullptr), bottom_node(nullptr), right_node(nullptr), width(0.0), left_highest(false)
{
}
void Clear()
{
left_node = NULL;
bottom_node = NULL;
right_node = NULL;
width = 0.0;
left_highest = false;
}
};
void Clear()
{
left_node = nullptr;
bottom_node = nullptr;
right_node = nullptr;
width = 0.0;
left_highest = false;
}
};
struct EdgeEvent {
Edge* constrained_edge;
bool right;
struct EdgeEvent {
Edge* constrained_edge;
bool right;
EdgeEvent() : constrained_edge(NULL), right(false)
{
}
};
EdgeEvent() : constrained_edge(NULL), right(false)
{
}
};
Basin basin;
EdgeEvent edge_event;
Basin basin;
EdgeEvent edge_event;
private:
friend class Sweep;
friend class Sweep;
std::vector<Triangle*> triangles_;
std::list<Triangle*> map_;
std::vector<Point*> points_;
std::vector<Triangle*> triangles_;
std::list<Triangle*> map_;
std::vector<Point*> points_;
// Advancing front
AdvancingFront* front_;
// head point used with advancing front
Point* head_;
// tail point used with advancing front
Point* tail_;
// Advancing front
AdvancingFront* front_;
// head point used with advancing front
Point* head_;
// tail point used with advancing front
Point* tail_;
Node *af_head_, *af_middle_, *af_tail_;
Node *af_head_, *af_middle_, *af_tail_;
void InitTriangulation();
void InitEdges(const std::vector<Point*>& polyline);
void InitTriangulation();
void InitEdges(const std::vector<Point*>& polyline);
};
inline AdvancingFront* SweepContext::front() const
{
return front_;
return front_;
}
inline size_t SweepContext::point_count() const
{
return points_.size();
return points_.size();
}
inline void SweepContext::set_head(Point* p1)
{
head_ = p1;
head_ = p1;
}
inline Point* SweepContext::head() const
{
return head_;
return head_;
}
inline void SweepContext::set_tail(Point* p1)
{
tail_ = p1;
tail_ = p1;
}
inline Point* SweepContext::tail() const
{
return tail_;
return tail_;
}
}
#endif