diff --git a/src/analysis/processing/qgsalgorithmkmeansclustering.cpp b/src/analysis/processing/qgsalgorithmkmeansclustering.cpp index b699a88440f..5bf099ce37d 100644 --- a/src/analysis/processing/qgsalgorithmkmeansclustering.cpp +++ b/src/analysis/processing/qgsalgorithmkmeansclustering.cpp @@ -60,7 +60,7 @@ void QgsKMeansClusteringAlgorithm::initAlgorithm( const QVariantMap & ) QString QgsKMeansClusteringAlgorithm::shortHelpString() const { return QObject::tr( "Calculates the 2D distance based k-means cluster number for each input feature.\n\n" - "If input geometries are line or polygons, the clustering is based on the centroid of the feature." ); + "If input geometries are lines or polygons, the clustering is based on the centroid of the feature." ); } QgsKMeansClusteringAlgorithm *QgsKMeansClusteringAlgorithm::createInstance() const @@ -229,7 +229,7 @@ void QgsKMeansClusteringAlgorithm::initClusters( std::vector &points, s } // By now two points should be found and be not the same - Q_ASSERT( p1 != p2 && maxDistance >= 0 ); + // Q_ASSERT( p1 != p2 && maxDistance >= 0 ); // Accept these two points as our initial centers centers[0] = points[p1].point;