OpenCL POC 1

This commit is contained in:
Alessandro Pasotti 2018-04-10 08:50:12 +02:00
parent a2a56696b0
commit 05be622c30
4 changed files with 322 additions and 25 deletions

View File

@ -28,6 +28,19 @@ MESSAGE(STATUS "QGIS version: ${COMPLETE_VERSION} ${RELEASE_NAME} (${QGIS_VERSIO
#############################################################
# Configure OpenCL if available
option(USE_OPENCL "Use OpenCL" ON)
if (USE_OPENCL)
FIND_PACKAGE(OpenCL)
if(${OpenCL_FOUND})
SET (USE_OPENCL TRUE CACHE BOOL "Use OpenCL")
IF(USE_OPENCL)
SET(HAVE_OPENCL TRUE)
ENDIF(USE_OPENCL)
endif(${OpenCL_FOUND})
endif(USE_OPENCL)
# Configure CCache if available
IF(NOT MSVC)
option(USE_CCACHE "Use ccache" ON)

View File

@ -57,6 +57,8 @@
#cmakedefine HAVE_SERVER_PYTHON_PLUGINS
#cmakedefine HAVE_OPENCL
#cmakedefine ENABLE_MODELTEST
#cmakedefine HAVE_3D

View File

@ -300,8 +300,15 @@ INCLUDE_DIRECTORIES(SYSTEM
${GEOS_INCLUDE_DIR}
${GDAL_INCLUDE_DIR}
${SQLITE3_INCLUDE_DIR}
${OpenCL_INCLUDE_DIRS}
)
IF(HAVE_OPENCL)
INCLUDE_DIRECTORIES(${OpenCL_LIBRARIES})
ENDIF(HAVE_OPENCL)
#############################################################
# qgis_analysis library
@ -353,6 +360,11 @@ ENDIF (NOT ANDROID)
TARGET_LINK_LIBRARIES(qgis_analysis qgis_core)
IF(HAVE_OPENCL)
TARGET_LINK_LIBRARIES(qgis_analysis ${OpenCL_LIBRARIES})
ENDIF(HAVE_OPENCL)
# clang-tidy
IF(CLANG_TIDY_EXE)
SET_TARGET_PROPERTIES(

View File

@ -21,6 +21,16 @@
#include "qgsfeedback.h"
#include "qgsogrutils.h"
#include <QFile>
#include "qdebug.h"
#ifdef HAVE_OPENCL
#ifdef __APPLE__
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif
#endif
QgsNineCellFilter::QgsNineCellFilter( const QString &inputFile, const QString &outputFile, const QString &outputFormat )
: mInputFile( inputFile )
@ -32,6 +42,8 @@ QgsNineCellFilter::QgsNineCellFilter( const QString &inputFile, const QString &o
int QgsNineCellFilter::processRaster( QgsFeedback *feedback )
{
GDALAllRegister();
//open input file
@ -77,13 +89,196 @@ int QgsNineCellFilter::processRaster( QgsFeedback *feedback )
return 6;
}
//keep only three scanlines in memory at a time
float *scanLine1 = ( float * ) CPLMalloc( sizeof( float ) * xSize );
float *scanLine2 = ( float * ) CPLMalloc( sizeof( float ) * xSize );
float *scanLine3 = ( float * ) CPLMalloc( sizeof( float ) * xSize );
//keep only three scanlines in memory at a time, make room for initial and final nodata
float *scanLine1 = ( float * ) CPLMalloc( sizeof( float ) * ( xSize + 2 ) );
float *scanLine2 = ( float * ) CPLMalloc( sizeof( float ) * ( xSize + 2 ) );
float *scanLine3 = ( float * ) CPLMalloc( sizeof( float ) * ( xSize + 2 ) );
float *resultLine = ( float * ) CPLMalloc( sizeof( float ) * xSize );
#ifdef HAVE_OPENCL
// TODO: move to utils and check for errors
// Get platform and device information
cl_platform_id platform_id = NULL;
cl_device_id device_id = NULL;
cl_uint ret_num_devices;
cl_uint ret_num_platforms;
cl_int ret = clGetPlatformIDs( 1, &platform_id, &ret_num_platforms );
ret = clGetDeviceIDs( platform_id, CL_DEVICE_TYPE_ALL, 1,
&device_id, &ret_num_devices );
// Create an OpenCL context
cl_context context = clCreateContext( NULL, 1, &device_id, NULL, NULL, &ret );
// Create a command queue
cl_command_queue command_queue = clCreateCommandQueue( context, device_id, 0, &ret );
// Create memory buffers on the device for each vector
cl_mem scanLine1_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ) * ( xSize + 2 ), NULL, &ret );
cl_mem scanLine2_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ) * ( xSize + 2 ), NULL, &ret );
cl_mem scanLine3_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ) * ( xSize + 2 ), NULL, &ret );
// TODO: constants
cl_mem inputNodataValue_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ), NULL, &ret );
cl_mem outputNodataValue_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ), NULL, &ret );
cl_mem zFactor_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ), NULL, &ret );
cl_mem cellSizeX_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ), NULL, &ret );
cl_mem cellSizeY_mem_obj = clCreateBuffer( context, CL_MEM_READ_ONLY,
sizeof( float ), NULL, &ret );
cl_mem resultLine_mem_obj = clCreateBuffer( context, CL_MEM_WRITE_ONLY,
sizeof( float ) * xSize, NULL, &ret );
const char *source_str = R"pgm(
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
float calcFirstDer( float x11, float x21, float x31, float x12, float x22, float x32, float x13, float x23, float x33,
float mInputNodataValue, float mOutputNodataValue, float mZFactor, float mCellSize )
{
//the basic formula would be simple, but we need to test for nodata values...
//X: return (( (x31 - x11) + 2 * (x32 - x12) + (x33 - x13) ) / (8 * mCellSizeX));
//Y: return (((x11 - x13) + 2 * (x21 - x23) + (x31 - x33)) / ( 8 * mCellSizeY));
int weight = 0;
double sum = 0;
//first row
if ( x31 != mInputNodataValue && x11 != mInputNodataValue ) //the normal case
{
sum += ( x31 - x11 );
weight += 2;
}
else if ( x31 == mInputNodataValue && x11 != mInputNodataValue && x21 != mInputNodataValue ) //probably 3x3 window is at the border
{
sum += ( x21 - x11 );
weight += 1;
}
else if ( x11 == mInputNodataValue && x31 != mInputNodataValue && x21 != mInputNodataValue ) //probably 3x3 window is at the border
{
sum += ( x31 - x21 );
weight += 1;
}
//second row
if ( x32 != mInputNodataValue && x12 != mInputNodataValue ) //the normal case
{
sum += 2 * ( x32 - x12 );
weight += 4;
}
else if ( x32 == mInputNodataValue && x12 != mInputNodataValue && x22 != mInputNodataValue )
{
sum += 2 * ( x22 - x12 );
weight += 2;
}
else if ( x12 == mInputNodataValue && x32 != mInputNodataValue && x22 != mInputNodataValue )
{
sum += 2 * ( x32 - x22 );
weight += 2;
}
//third row
if ( x33 != mInputNodataValue && x13 != mInputNodataValue ) //the normal case
{
sum += ( x33 - x13 );
weight += 2;
}
else if ( x33 == mInputNodataValue && x13 != mInputNodataValue && x23 != mInputNodataValue )
{
sum += ( x23 - x13 );
weight += 1;
}
else if ( x13 == mInputNodataValue && x33 != mInputNodataValue && x23 != mInputNodataValue )
{
sum += ( x33 - x23 );
weight += 1;
}
if ( weight == 0 )
{
return mOutputNodataValue;
}
return sum / ( weight * mCellSize ) * mZFactor;
}
__kernel void processNineCellWindow( __global float *scanLine1,
__global float *scanLine2,
__global float *scanLine3,
__global float *resultLine,
__global float *mInputNodataValue,
__global float *mOutputNodataValue,
__global float *mZFactor,
__global float *mCellSizeX,
__global float *mCellSizeY
) {
// Get the index of the current element
int i = get_global_id(0);
// Do the operation
//return (( (x31 - x11) + 2 * (x32 - x12) + (x33 - x13) ) / (8 * mCellSizeX))
float derX = calcFirstDer( scanLine1[i], scanLine2[i], scanLine3[i],
scanLine1[i+1], scanLine2[i+1], scanLine3[i+1],
scanLine1[i+2], scanLine2[i+2], scanLine3[i+2],
*mInputNodataValue, *mOutputNodataValue, *mZFactor, *mCellSizeX
);
//return (((x11 - x13) + 2 * (x21 - x23) + (x31 - x33)) / ( 8 * mCellSizeY));
float derY = calcFirstDer( scanLine1[i+2], scanLine1[i+1], scanLine1[i],
scanLine2[i+2], scanLine2[i+1], scanLine2[i],
scanLine3[i+2], scanLine3[i+1], scanLine3[i],
*mInputNodataValue, *mOutputNodataValue, *mZFactor, *mCellSizeY
);
if ( derX == *mOutputNodataValue || derY == *mOutputNodataValue )
{
resultLine[i] = *mOutputNodataValue;
}
else
{
resultLine[i] = atan( sqrt( derX * derX + derY * derY ) ) * 180.0 / M_PI;
}
}
)pgm";
// Create a program from the kernel source
Q_ASSERT( ret == 0 );
size_t source_size = strlen( source_str );
cl_program program = clCreateProgramWithSource( context, 1,
( const char ** )&source_str, ( const size_t * )&source_size, &ret );
// Build the program
ret = clBuildProgram( program, 1, &device_id, NULL, NULL, NULL );
if ( ret != 0 )
{
char *program_log;
size_t log_size;
/* Find size of log and print to std output */
clGetProgramBuildInfo( program, device_id, CL_PROGRAM_BUILD_LOG,
0, NULL, &log_size );
program_log = ( char * ) malloc( log_size + 1 );
program_log[log_size] = '\0';
clGetProgramBuildInfo( program, device_id, CL_PROGRAM_BUILD_LOG,
log_size + 1, program_log, NULL );
qDebug() << program_log;
free( program_log );
}
#endif
//values outside the layer extent (if the 3x3 window is on the border) are sent to the processing method as (input) nodata values
for ( int i = 0; i < ySize; ++i )
{
@ -100,11 +295,12 @@ int QgsNineCellFilter::processRaster( QgsFeedback *feedback )
if ( i == 0 )
{
//fill scanline 1 with (input) nodata for the values above the first row and feed scanline2 with the first row
for ( int a = 0; a < xSize; ++a )
for ( int a = 0; a < xSize + 2 ; ++a )
{
scanLine1[a] = mInputNodataValue;
}
if ( GDALRasterIO( rasterBand, GF_Read, 0, 0, xSize, 1, scanLine2, xSize, 1, GDT_Float32, 0, 0 ) != CE_None )
// Read scanline2
if ( GDALRasterIO( rasterBand, GF_Read, 0, 0, xSize, 1, &scanLine2[1], xSize, 1, GDT_Float32, 0, 0 ) != CE_None )
{
QgsDebugMsg( "Raster IO Error" );
}
@ -115,41 +311,113 @@ int QgsNineCellFilter::processRaster( QgsFeedback *feedback )
CPLFree( scanLine1 );
scanLine1 = scanLine2;
scanLine2 = scanLine3;
scanLine3 = ( float * ) CPLMalloc( sizeof( float ) * xSize );
scanLine3 = ( float * ) CPLMalloc( sizeof( float ) * ( xSize + 2 ) );
}
// Read scanline 3
if ( i == ySize - 1 ) //fill the row below the bottom with nodata values
{
for ( int a = 0; a < xSize; ++a )
for ( int a = 0; a < xSize + 2; ++a )
{
scanLine3[a] = mInputNodataValue;
}
}
else
{
if ( GDALRasterIO( rasterBand, GF_Read, 0, i + 1, xSize, 1, scanLine3, xSize, 1, GDT_Float32, 0, 0 ) != CE_None )
if ( GDALRasterIO( rasterBand, GF_Read, 0, i + 1, xSize, 1, &scanLine3[1], xSize, 1, GDT_Float32, 0, 0 ) != CE_None )
{
QgsDebugMsg( "Raster IO Error" );
}
}
for ( int j = 0; j < xSize; ++j )
scanLine1[0] = scanLine1[xSize + 1] = mInputNodataValue;
scanLine2[0] = scanLine2[xSize + 1] = mInputNodataValue;
scanLine3[0] = scanLine3[xSize + 1] = mInputNodataValue;
#ifdef HAVE_OPENCL
// Copy the scan lines to their respective memory buffers
ret = clEnqueueWriteBuffer( command_queue, scanLine1_mem_obj, CL_TRUE, 0,
sizeof( float ) * ( xSize + 2 ), scanLine1, 0, NULL, NULL );
ret = clEnqueueWriteBuffer( command_queue, scanLine2_mem_obj, CL_TRUE, 0,
sizeof( float ) * ( xSize + 2 ), scanLine2, 0, NULL, NULL );
ret = clEnqueueWriteBuffer( command_queue, scanLine3_mem_obj, CL_TRUE, 0,
sizeof( float ) * ( xSize + 2 ), scanLine3, 0, NULL, NULL );
ret = clEnqueueWriteBuffer( command_queue, inputNodataValue_mem_obj, CL_TRUE, 0,
sizeof( float ), &mInputNodataValue, 0, NULL, NULL );
ret = clEnqueueWriteBuffer( command_queue, outputNodataValue_mem_obj, CL_TRUE, 0,
sizeof( float ), &mOutputNodataValue, 0, NULL, NULL );
ret = clEnqueueWriteBuffer( command_queue, zFactor_mem_obj, CL_TRUE, 0,
sizeof( float ), &mZFactor, 0, NULL, NULL );
ret = clEnqueueWriteBuffer( command_queue, cellSizeX_mem_obj, CL_TRUE, 0,
sizeof( float ), &mCellSizeX, 0, NULL, NULL );
ret = clEnqueueWriteBuffer( command_queue, cellSizeY_mem_obj, CL_TRUE, 0,
sizeof( float ), &mCellSizeY, 0, NULL, NULL );
// Create the OpenCL kernel
cl_kernel kernel = clCreateKernel( program, "processNineCellWindow", &ret );
Q_ASSERT( ret == 0 );
// Set the arguments of the kernel
ret = ret || clSetKernelArg( kernel, 0, sizeof( cl_mem ), ( void * )&scanLine1_mem_obj );
ret = ret || clSetKernelArg( kernel, 1, sizeof( cl_mem ), ( void * )&scanLine2_mem_obj );
ret = ret || clSetKernelArg( kernel, 2, sizeof( cl_mem ), ( void * )&scanLine3_mem_obj );
ret = ret || clSetKernelArg( kernel, 3, sizeof( cl_mem ), ( void * )&resultLine_mem_obj );
ret = ret || clSetKernelArg( kernel, 4, sizeof( cl_mem ), ( void * )&inputNodataValue_mem_obj );
ret = ret || clSetKernelArg( kernel, 5, sizeof( cl_mem ), ( void * )&outputNodataValue_mem_obj );
ret = ret || clSetKernelArg( kernel, 6, sizeof( cl_mem ), ( void * )&zFactor_mem_obj );
ret = ret || clSetKernelArg( kernel, 7, sizeof( cl_mem ), ( void * )&cellSizeX_mem_obj );
ret = ret || clSetKernelArg( kernel, 8, sizeof( cl_mem ), ( void * )&cellSizeY_mem_obj );
Q_ASSERT( ret == 0 );
// Execute the OpenCL kernel on the scan line
size_t global_item_size = xSize; // Process the entire lists
//size_t local_item_size = 64; // Process in groups of 64 (or NULL for auto)
//ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL,
// &global_item_size, &local_item_size, 0, NULL, NULL);
ret = clEnqueueNDRangeKernel( command_queue, kernel, 1, NULL,
&global_item_size, NULL, 0, NULL, NULL );
Q_ASSERT( ret == 0 );
ret = clEnqueueReadBuffer( command_queue, resultLine_mem_obj, CL_TRUE, 0,
xSize * sizeof( float ), resultLine, 0, NULL, NULL );
if ( GDALRasterIO( outputRasterBand, GF_Write, 0, i, xSize, 1, resultLine, xSize, 1, GDT_Float32, 0, 0 ) != CE_None )
{
if ( j == 0 )
{
resultLine[j] = processNineCellWindow( &mInputNodataValue, &scanLine1[j], &scanLine1[j + 1], &mInputNodataValue, &scanLine2[j],
&scanLine2[j + 1], &mInputNodataValue, &scanLine3[j], &scanLine3[j + 1] );
}
else if ( j == xSize - 1 )
{
resultLine[j] = processNineCellWindow( &scanLine1[j - 1], &scanLine1[j], &mInputNodataValue, &scanLine2[j - 1], &scanLine2[j],
&mInputNodataValue, &scanLine3[j - 1], &scanLine3[j], &mInputNodataValue );
}
else
{
resultLine[j] = processNineCellWindow( &scanLine1[j - 1], &scanLine1[j], &scanLine1[j + 1], &scanLine2[j - 1], &scanLine2[j],
&scanLine2[j + 1], &scanLine3[j - 1], &scanLine3[j], &scanLine3[j + 1] );
}
QgsDebugMsg( "Raster IO Error" );
}
qDebug() << resultLine[1];
ret = clReleaseKernel( kernel );
}
// Clean up
ret = clFlush( command_queue );
ret = clFinish( command_queue );
ret = clReleaseProgram( program );
ret = clReleaseMemObject( scanLine1_mem_obj );
ret = clReleaseMemObject( scanLine2_mem_obj );
ret = clReleaseMemObject( scanLine3_mem_obj );
ret = clReleaseMemObject( resultLine_mem_obj );
ret = clReleaseCommandQueue( command_queue );
ret = clReleaseContext( context );
#else
// j is the x axis index, skip 0 and last cell that hve been filled with nodata
for ( int j = 0; j < xSize ; ++j )
{
resultLine[ j ] = processNineCellWindow( &scanLine1[ j ], &scanLine1[ j + 1 ], &scanLine1[ j + 2 ],
&scanLine2[ j ], &scanLine2[ j + 1 ], &scanLine2[ j + 2 ],
&scanLine3[ j ], &scanLine3[ j + 1 ], &scanLine3[ j + 2 ] );
}
if ( GDALRasterIO( outputRasterBand, GF_Write, 0, i, xSize, 1, resultLine, xSize, 1, GDT_Float32, 0, 0 ) != CE_None )
@ -157,6 +425,8 @@ int QgsNineCellFilter::processRaster( QgsFeedback *feedback )
QgsDebugMsg( "Raster IO Error" );
}
}
#endif
CPLFree( resultLine );
CPLFree( scanLine1 );