QGIS/python/plugins/processing/algs/qgis/PointDistance.py

286 lines
13 KiB
Python
Raw Normal View History

2012-10-04 19:33:47 +02:00
# -*- coding: utf-8 -*-
"""
***************************************************************************
PointDistance.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
2012-10-04 19:33:47 +02:00
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
import os
import math
2016-04-22 10:38:48 +02:00
from qgis.PyQt.QtGui import QIcon
from qgis.PyQt.QtCore import QVariant
from qgis.core import (QgsApplication,
QgsFeatureRequest,
QgsField,
QgsFields,
QgsProject,
QgsFeature,
QgsGeometry,
QgsDistanceArea,
QgsFeatureSink,
QgsProcessingParameterFeatureSource,
QgsProcessing,
QgsProcessingException,
QgsProcessingParameterEnum,
QgsProcessingParameterField,
QgsProcessingParameterNumber,
QgsProcessingParameterFeatureSink,
QgsSpatialIndex,
QgsWkbTypes)
2017-06-06 13:41:42 +10:00
from processing.algs.qgis.QgisAlgorithm import QgisAlgorithm
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
class PointDistance(QgisAlgorithm):
INPUT = 'INPUT'
INPUT_FIELD = 'INPUT_FIELD'
TARGET = 'TARGET'
TARGET_FIELD = 'TARGET_FIELD'
MATRIX_TYPE = 'MATRIX_TYPE'
NEAREST_POINTS = 'NEAREST_POINTS'
OUTPUT = 'OUTPUT'
def icon(self):
return QgsApplication.getThemeIcon("/algorithms/mAlgorithmDistanceMatrix.svg")
def svgIconPath(self):
return QgsApplication.iconPath("/algorithms/mAlgorithmDistanceMatrix.svg")
def group(self):
2017-08-22 23:36:42 +10:00
return self.tr('Vector analysis')
def groupId(self):
return 'vectoranalysis'
def __init__(self):
super().__init__()
def initAlgorithm(self, config=None):
self.mat_types = [self.tr('Linear (N*k x 3) distance matrix'),
self.tr('Standard (N x T) distance matrix'),
self.tr('Summary distance matrix (mean, std. dev., min, max)')]
self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT,
self.tr('Input point layer'),
[QgsProcessing.TypeVectorPoint]))
self.addParameter(QgsProcessingParameterField(self.INPUT_FIELD,
self.tr('Input unique ID field'),
parentLayerParameterName=self.INPUT,
type=QgsProcessingParameterField.Any))
self.addParameter(QgsProcessingParameterFeatureSource(self.TARGET,
self.tr('Target point layer'),
[QgsProcessing.TypeVectorPoint]))
self.addParameter(QgsProcessingParameterField(self.TARGET_FIELD,
self.tr('Target unique ID field'),
parentLayerParameterName=self.TARGET,
type=QgsProcessingParameterField.Any))
self.addParameter(QgsProcessingParameterEnum(self.MATRIX_TYPE,
self.tr('Output matrix type'), options=self.mat_types, defaultValue=0))
self.addParameter(QgsProcessingParameterNumber(self.NEAREST_POINTS,
self.tr('Use only the nearest (k) target points'), type=QgsProcessingParameterNumber.Integer, minValue=0, defaultValue=0))
self.addParameter(QgsProcessingParameterFeatureSink(self.OUTPUT, self.tr('Distance matrix'), QgsProcessing.TypeVectorPoint))
def name(self):
return 'distancematrix'
def displayName(self):
return self.tr('Distance matrix')
def processAlgorithm(self, parameters, context, feedback):
source = self.parameterAsSource(parameters, self.INPUT, context)
if source is None:
raise QgsProcessingException(self.invalidSourceError(parameters, self.INPUT))
if QgsWkbTypes.isMultiType(source.wkbType()):
raise QgsProcessingException(self.tr('Input point layer is a MultiPoint layer - first convert to single points before using this algorithm.'))
source_field = self.parameterAsString(parameters, self.INPUT_FIELD, context)
target_source = self.parameterAsSource(parameters, self.TARGET, context)
if target_source is None:
raise QgsProcessingException(self.invalidSourceError(parameters, self.TARGET))
if QgsWkbTypes.isMultiType(target_source.wkbType()):
raise QgsProcessingException(self.tr('Target point layer is a MultiPoint layer - first convert to single points before using this algorithm.'))
target_field = self.parameterAsString(parameters, self.TARGET_FIELD, context)
same_source_and_target = parameters[self.INPUT] == parameters[self.TARGET]
matType = self.parameterAsEnum(parameters, self.MATRIX_TYPE, context)
nPoints = self.parameterAsInt(parameters, self.NEAREST_POINTS, context)
if nPoints < 1:
nPoints = target_source.featureCount()
if matType == 0:
# Linear distance matrix
return self.linearMatrix(parameters, context, source, source_field, target_source, target_field, same_source_and_target,
matType, nPoints, feedback)
elif matType == 1:
# Standard distance matrix
return self.regularMatrix(parameters, context, source, source_field, target_source, target_field,
nPoints, feedback)
elif matType == 2:
# Summary distance matrix
return self.linearMatrix(parameters, context, source, source_field, target_source, target_field, same_source_and_target,
matType, nPoints, feedback)
def linearMatrix(self, parameters, context, source, inField, target_source, targetField, same_source_and_target,
matType, nPoints, feedback):
if same_source_and_target:
# need to fetch an extra point from the index, since the closest match will always be the same
# as the input feature
nPoints += 1
inIdx = source.fields().lookupField(inField)
outIdx = target_source.fields().lookupField(targetField)
fields = QgsFields()
input_id_field = source.fields()[inIdx]
input_id_field.setName('InputID')
fields.append(input_id_field)
if matType == 0:
target_id_field = target_source.fields()[outIdx]
target_id_field.setName('TargetID')
fields.append(target_id_field)
fields.append(QgsField('Distance', QVariant.Double))
else:
fields.append(QgsField('MEAN', QVariant.Double))
fields.append(QgsField('STDDEV', QVariant.Double))
fields.append(QgsField('MIN', QVariant.Double))
fields.append(QgsField('MAX', QVariant.Double))
2013-02-07 01:09:39 +01:00
out_wkb = QgsWkbTypes.multiType(source.wkbType()) if matType == 0 else source.wkbType()
(sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
fields, out_wkb, source.sourceCrs())
if sink is None:
raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
index = QgsSpatialIndex(target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setDestinationCrs(source.sourceCrs(), context.transformContext())), feedback)
distArea = QgsDistanceArea()
distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
distArea.setEllipsoid(context.project().ellipsoid())
2013-02-07 01:09:39 +01:00
features = source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([inIdx]))
total = 100.0 / source.featureCount() if source.featureCount() else 0
for current, inFeat in enumerate(features):
if feedback.isCanceled():
break
inGeom = inFeat.geometry()
inID = str(inFeat[inIdx])
featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
distList = []
vari = 0.0
request = QgsFeatureRequest().setFilterFids(featList).setSubsetOfAttributes([outIdx]).setDestinationCrs(source.sourceCrs(), context.transformContext())
for outFeat in target_source.getFeatures(request):
if feedback.isCanceled():
break
if same_source_and_target and inFeat.id() == outFeat.id():
continue
outID = outFeat[outIdx]
outGeom = outFeat.geometry()
dist = distArea.measureLine(inGeom.asPoint(),
outGeom.asPoint())
if matType == 0:
out_feature = QgsFeature()
out_geom = QgsGeometry.unaryUnion([inFeat.geometry(), outFeat.geometry()])
out_feature.setGeometry(out_geom)
out_feature.setAttributes([inID, outID, dist])
sink.addFeature(out_feature, QgsFeatureSink.FastInsert)
else:
distList.append(float(dist))
if matType != 0:
mean = sum(distList) / len(distList)
for i in distList:
vari += (i - mean) * (i - mean)
vari = math.sqrt(vari / len(distList))
out_feature = QgsFeature()
out_feature.setGeometry(inFeat.geometry())
out_feature.setAttributes([inID, mean, vari, min(distList), max(distList)])
sink.addFeature(out_feature, QgsFeatureSink.FastInsert)
feedback.setProgress(int(current * total))
return {self.OUTPUT: dest_id}
def regularMatrix(self, parameters, context, source, inField, target_source, targetField,
nPoints, feedback):
distArea = QgsDistanceArea()
distArea.setSourceCrs(source.sourceCrs(), context.transformContext())
distArea.setEllipsoid(context.project().ellipsoid())
inIdx = source.fields().lookupField(inField)
targetIdx = target_source.fields().lookupField(targetField)
index = QgsSpatialIndex(target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setDestinationCrs(source.sourceCrs(), context.transformContext())), feedback)
first = True
sink = None
dest_id = None
features = source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([inIdx]))
total = 100.0 / source.featureCount() if source.featureCount() else 0
for current, inFeat in enumerate(features):
if feedback.isCanceled():
break
inGeom = inFeat.geometry()
if first:
featList = index.nearestNeighbor(inGeom.asPoint(), nPoints)
first = False
fields = QgsFields()
input_id_field = source.fields()[inIdx]
input_id_field.setName('ID')
fields.append(input_id_field)
for f in target_source.getFeatures(QgsFeatureRequest().setFilterFids(featList).setSubsetOfAttributes([targetIdx]).setDestinationCrs(source.sourceCrs(), context.transformContext())):
fields.append(QgsField(str(f[targetField]), QVariant.Double))
(sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
fields, source.wkbType(), source.sourceCrs())
if sink is None:
raise QgsProcessingException(self.invalidSinkError(parameters, self.OUTPUT))
data = [inFeat[inField]]
for target in target_source.getFeatures(QgsFeatureRequest().setSubsetOfAttributes([]).setFilterFids(featList).setDestinationCrs(source.sourceCrs(), context.transformContext())):
if feedback.isCanceled():
break
outGeom = target.geometry()
dist = distArea.measureLine(inGeom.asPoint(),
outGeom.asPoint())
data.append(dist)
out_feature = QgsFeature()
out_feature.setGeometry(inGeom)
out_feature.setAttributes(data)
sink.addFeature(out_feature, QgsFeatureSink.FastInsert)
feedback.setProgress(int(current * total))
return {self.OUTPUT: dest_id}