2014-01-17 19:39:17 +01:00
<root >
<key > TrainImagesClassifier-svm</key>
<exec > otbcli_TrainImagesClassifier</exec>
<longname > TrainImagesClassifier (svm)</longname>
<group > Learning</group>
<description > Train a classifier from multiple pairs of images and training vector data.</description>
<parameter >
<parameter_type source_parameter_type= "ParameterType_InputImageList" > ParameterMultipleInput</parameter_type>
<key > io.il</key>
<name > Input Image List</name>
<description > A list of input images.</description>
<datatype />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_InputVectorDataList" > ParameterMultipleInput</parameter_type>
<key > io.vd</key>
<name > Input Vector Data List</name>
<description > A list of vector data to select the training samples.</description>
<datatype />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_InputFilename" > ParameterFile</parameter_type>
<key > io.imstat</key>
<name > Input XML image statistics file</name>
<description > Input XML file containing the mean and the standard deviation of the input images.</description>
<isFolder />
<optional > True</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_OutputFilename" > OutputFile</parameter_type>
<key > io.confmatout</key>
<name > Output confusion matrix</name>
<description > Output file containing the confusion matrix (.csv format).</description>
<hidden />
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_OutputFilename" > OutputFile</parameter_type>
<key > io.out</key>
<name > Output model</name>
<description > Output file containing the model estimated (.txt format).</description>
<hidden />
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Float" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > elev.default</key>
<name > Default elevation</name>
2014-05-17 17:35:27 +02:00
<description > This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.</description>
2014-01-17 19:39:17 +01:00
<minValue />
<maxValue />
<default > 0</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Int" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > sample.mt</key>
<name > Maximum training sample size per class</name>
<description > Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.</description>
<minValue />
<maxValue />
<default > 1000</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Int" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > sample.mv</key>
<name > Maximum validation sample size per class</name>
<description > Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.</description>
<minValue />
<maxValue />
<default > 1000</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Empty" > *ParameterBoolean</parameter_type>
2014-01-17 19:39:17 +01:00
<key > sample.edg</key>
<name > On edge pixel inclusion</name>
<description > Takes pixels on polygon edge into consideration when building training and validation samples.</description>
<default > True</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > sample.vtr</key>
<name > Training and validation sample ratio</name>
<description > Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
<minValue />
<maxValue />
<default > 0.5</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_String" > ParameterString</parameter_type>
<key > sample.vfn</key>
<name > Name of the discrimination field</name>
<description > Name of the field used to discriminate class labels in the input vector data files.</description>
<default > Class</default>
<multiline />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > classifier</key>
<name > Classifier to use for the training</name>
<description > Choice of the classifier to use for the training.</description>
<options >
<choices >
<choice > svm</choice>
</choices>
</options>
<default > 0</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Choice" > *ParameterSelection</parameter_type>
2014-01-17 19:39:17 +01:00
<key > classifier.svm.m</key>
<name > SVM Model Type</name>
<description > Type of SVM formulation.</description>
<options >
<choices >
<choice > csvc</choice>
<choice > nusvc</choice>
<choice > oneclass</choice>
</choices>
</options>
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > classifier.svm.k</key>
<name > SVM Kernel Type</name>
<description > SVM Kernel Type.</description>
<options >
<choices >
<choice > linear</choice>
<choice > rbf</choice>
<choice > poly</choice>
<choice > sigmoid</choice>
</choices>
</options>
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.svm.c</key>
<name > Cost parameter C</name>
<description > SVM models have a cost parameter C (1 by default) to control the trade-off between training errors and forcing rigid margins.</description>
<minValue />
<maxValue />
<default > 1</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Float" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > classifier.svm.nu</key>
<name > Parameter nu of a SVM optimization problem (NU_SVC / ONE_CLASS)</name>
<description > Parameter nu of a SVM optimization problem.</description>
<minValue />
<maxValue />
<default > 0</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Float" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > classifier.svm.coef0</key>
<name > Parameter coef0 of a kernel function (POLY / SIGMOID)</name>
<description > Parameter coef0 of a kernel function (POLY / SIGMOID).</description>
<minValue />
<maxValue />
<default > 0</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Float" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > classifier.svm.gamma</key>
<name > Parameter gamma of a kernel function (POLY / RBF / SIGMOID)</name>
<description > Parameter gamma of a kernel function (POLY / RBF / SIGMOID).</description>
<minValue />
<maxValue />
<default > 1</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Float" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > classifier.svm.degree</key>
<name > Parameter degree of a kernel function (POLY)</name>
<description > Parameter degree of a kernel function (POLY).</description>
<minValue />
<maxValue />
<default > 1</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Empty" > ParameterBoolean</parameter_type>
<key > classifier.svm.opt</key>
<name > Parameters optimization</name>
<description > SVM parameters optimization flag.
-If set to True, then the optimal SVM parameters will be estimated. Parameters are considered optimal by OpenCV when the cross-validation estimate of the test set error is minimal. Finally, the SVM training process is computed 10 times with these optimal parameters over subsets corresponding to 1/10th of the training samples using the k-fold cross-validation (with k = 10).
-If set to False, the SVM classification process will be computed once with the currently set input SVM parameters over the training samples.
-Thus, even with identical input SVM parameters and a similar random seed, the output SVM models will be different according to the method used (optimized or not) because the samples are not identically processed within OpenCV.</description>
<default > True</default>
</parameter>
<parameter >
2014-07-22 11:22:21 +02:00
<parameter_type source_parameter_type= "ParameterType_Int" > *ParameterNumber</parameter_type>
2014-01-17 19:39:17 +01:00
<key > rand</key>
<name > set user defined seed</name>
<description > Set specific seed. with integer value.</description>
<minValue />
<maxValue />
<default > 0</default>
</parameter>
</root>