2014-01-17 19:39:17 +01:00
<root >
<key > TrainImagesClassifier-ann</key>
<exec > otbcli_TrainImagesClassifier</exec>
<longname > TrainImagesClassifier (ann)</longname>
<group > Learning</group>
<description > Train a classifier from multiple pairs of images and training vector data.</description>
<parameter >
<parameter_type source_parameter_type= "ParameterType_InputImageList" > ParameterMultipleInput</parameter_type>
<key > io.il</key>
<name > Input Image List</name>
<description > A list of input images.</description>
<datatype />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_InputVectorDataList" > ParameterMultipleInput</parameter_type>
<key > io.vd</key>
<name > Input Vector Data List</name>
<description > A list of vector data to select the training samples.</description>
<datatype />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_InputFilename" > ParameterFile</parameter_type>
<key > io.imstat</key>
<name > Input XML image statistics file</name>
<description > Input XML file containing the mean and the standard deviation of the input images.</description>
<isFolder />
<optional > True</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_OutputFilename" > OutputFile</parameter_type>
<key > io.confmatout</key>
<name > Output confusion matrix</name>
<description > Output file containing the confusion matrix (.csv format).</description>
<hidden />
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_OutputFilename" > OutputFile</parameter_type>
<key > io.out</key>
<name > Output model</name>
<description > Output file containing the model estimated (.txt format).</description>
<hidden />
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > elev.default</key>
<name > Default elevation</name>
2014-05-17 17:35:27 +02:00
<description > This parameter allows setting the default height above ellipsoid when there is no DEM available, no coverage for some points or pixels with no_data in the DEM tiles, and no geoid file has been set. This is also used by some application as an average elevation value.</description>
2014-01-17 19:39:17 +01:00
<minValue />
<maxValue />
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Int" > ParameterNumber</parameter_type>
<key > sample.mt</key>
<name > Maximum training sample size per class</name>
<description > Maximum size per class (in pixels) of the training sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available training sample list per class will be equal to the surface area of the smallest class multiplied by the training sample ratio.</description>
<minValue />
<maxValue />
<default > 1000</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Int" > ParameterNumber</parameter_type>
<key > sample.mv</key>
<name > Maximum validation sample size per class</name>
<description > Maximum size per class (in pixels) of the validation sample list (default = 1000) (no limit = -1). If equal to -1, then the maximal size of the available validation sample list per class will be equal to the surface area of the smallest class multiplied by the validation sample ratio.</description>
<minValue />
<maxValue />
<default > 1000</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Empty" > ParameterBoolean</parameter_type>
<key > sample.edg</key>
<name > On edge pixel inclusion</name>
<description > Takes pixels on polygon edge into consideration when building training and validation samples.</description>
<default > True</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > sample.vtr</key>
<name > Training and validation sample ratio</name>
<description > Ratio between training and validation samples (0.0 = all training, 1.0 = all validation) (default = 0.5).</description>
<minValue />
<maxValue />
<default > 0.5</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_String" > ParameterString</parameter_type>
<key > sample.vfn</key>
<name > Name of the discrimination field</name>
<description > Name of the field used to discriminate class labels in the input vector data files.</description>
<default > Class</default>
<multiline />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > classifier</key>
<name > Classifier to use for the training</name>
<description > Choice of the classifier to use for the training.</description>
<options >
<choices >
<choice > ann</choice>
</choices>
</options>
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > classifier.ann.t</key>
<name > Train Method Type</name>
<description > Type of training method for the multilayer perceptron (MLP) neural network.</description>
<options >
<choices >
<choice > reg</choice>
<choice > back</choice>
</choices>
</options>
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_StringList" > ParameterString</parameter_type>
<key > classifier.ann.sizes</key>
<name > Number of neurons in each intermediate layer</name>
<description > The number of neurons in each intermediate layer (excluding input and output layers).</description>
<default />
<multiline />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > classifier.ann.f</key>
<name > Neuron activation function type</name>
<description > Neuron activation function.</description>
<options >
<choices >
<choice > ident</choice>
<choice > sig</choice>
<choice > gau</choice>
</choices>
</options>
<default > 1</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.ann.a</key>
<name > Alpha parameter of the activation function</name>
<description > Alpha parameter of the activation function (used only with sigmoid and gaussian functions).</description>
<minValue />
<maxValue />
<default > 1</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.ann.b</key>
<name > Beta parameter of the activation function</name>
<description > Beta parameter of the activation function (used only with sigmoid and gaussian functions).</description>
<minValue />
<maxValue />
<default > 1</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.ann.bpdw</key>
<name > Strength of the weight gradient term in the BACKPROP method</name>
<description > Strength of the weight gradient term in the BACKPROP method. The recommended value is about 0.1.</description>
<minValue />
<maxValue />
<default > 0.1</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.ann.bpms</key>
<name > Strength of the momentum term (the difference between weights on the 2 previous iterations)</name>
<description > Strength of the momentum term (the difference between weights on the 2 previous iterations). This parameter provides some inertia to smooth the random fluctuations of the weights. It can vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough.</description>
<minValue />
<maxValue />
<default > 0.1</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.ann.rdw</key>
<name > Initial value Delta_0 of update-values Delta_{ij} in RPROP method</name>
<description > Initial value Delta_0 of update-values Delta_{ij} in RPROP method (default = 0.1).</description>
<minValue />
<maxValue />
<default > 0.1</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.ann.rdwm</key>
<name > Update-values lower limit Delta_{min} in RPROP method</name>
<description > Update-values lower limit Delta_{min} in RPROP method. It must be positive (default = 1e-7).</description>
<minValue />
<maxValue />
<default > 1e-07</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > classifier.ann.term</key>
<name > Termination criteria</name>
<description > Termination criteria.</description>
<options >
<choices >
<choice > iter</choice>
<choice > eps</choice>
<choice > all</choice>
</choices>
</options>
<default > 2</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Float" > ParameterNumber</parameter_type>
<key > classifier.ann.eps</key>
<name > Epsilon value used in the Termination criteria</name>
<description > Epsilon value used in the Termination criteria.</description>
<minValue />
<maxValue />
<default > 0.01</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Int" > ParameterNumber</parameter_type>
<key > classifier.ann.iter</key>
<name > Maximum number of iterations used in the Termination criteria</name>
<description > Maximum number of iterations used in the Termination criteria.</description>
<minValue />
<maxValue />
<default > 1000</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Int" > ParameterNumber</parameter_type>
<key > rand</key>
<name > set user defined seed</name>
<description > Set specific seed. with integer value.</description>
<minValue />
<maxValue />
<default > 0</default>
</parameter>
</root>