2014-01-17 19:39:17 +01:00
<root >
<key > FusionOfClassifications-dempstershafer</key>
<exec > otbcli_FusionOfClassifications</exec>
<longname > FusionOfClassifications (dempstershafer)</longname>
<group > Learning</group>
<description > Fuses several classifications maps of the same image on the basis of class labels.</description>
<parameter >
<parameter_type source_parameter_type= "ParameterType_InputImageList" > ParameterMultipleInput</parameter_type>
<key > il</key>
<name > Input classifications</name>
<description > List of input classification maps to fuse. Labels in each classification image must represent the same class.</description>
<datatype />
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > method</key>
<name > Fusion method</name>
<description > Selection of the fusion method and its parameters.</description>
<options >
<choices >
<choice > dempstershafer</choice>
</choices>
</options>
<default > 0</default>
</parameter>
<parameter >
2014-04-13 12:47:34 +02:00
<parameter_type source_parameter_type= "ParameterType_InputFilenameList" > ParameterMultipleInput</parameter_type>
2014-01-17 19:39:17 +01:00
<key > method.dempstershafer.cmfl</key>
<name > Confusion Matrices</name>
<description > A list of confusion matrix files (*.CSV format) to define the masses of belief and the class labels. Each file should be formatted the following way: the first line, beginning with a '#' symbol, should be a list of the class labels present in the corresponding input classification image, organized in the same order as the confusion matrix rows/columns.</description>
2014-04-13 12:47:34 +02:00
<datatype />
2014-01-17 19:39:17 +01:00
<optional > False</optional>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Choice" > ParameterSelection</parameter_type>
<key > method.dempstershafer.mob</key>
<name > Mass of belief measurement</name>
<description > Type of confusion matrix measurement used to compute the masses of belief of each classifier.</description>
<options >
<choices >
<choice > precision</choice>
<choice > recall</choice>
<choice > accuracy</choice>
<choice > kappa</choice>
</choices>
</options>
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Int" > ParameterNumber</parameter_type>
<key > nodatalabel</key>
<name > Label for the NoData class</name>
<description > Label for the NoData class. Such input pixels keep their NoData label in the output image and are not handled in the fusion process. By default, 'nodatalabel = 0'.</description>
<minValue />
<maxValue />
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_Int" > ParameterNumber</parameter_type>
<key > undecidedlabel</key>
<name > Label for the Undecided class</name>
<description > Label for the Undecided class. Pixels with more than 1 fused class are marked as Undecided. Please note that the Undecided value must be different from existing labels in the input classifications. By default, 'undecidedlabel = 0'.</description>
<minValue />
<maxValue />
<default > 0</default>
</parameter>
<parameter >
<parameter_type source_parameter_type= "ParameterType_OutputImage" > OutputRaster</parameter_type>
<key > out</key>
<name > The output classification image</name>
<description > The output classification image resulting from the fusion of the input classification images.</description>
<hidden />
</parameter>
</root>