2012-10-04 19:33:47 +02:00
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
"""
|
|
|
|
***************************************************************************
|
|
|
|
NearestNeighbourAnalysis.py
|
|
|
|
---------------------
|
|
|
|
Date : August 2012
|
|
|
|
Copyright : (C) 2012 by Victor Olaya
|
|
|
|
Email : volayaf at gmail dot com
|
|
|
|
***************************************************************************
|
|
|
|
* *
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
***************************************************************************
|
|
|
|
"""
|
|
|
|
|
|
|
|
__author__ = 'Victor Olaya'
|
|
|
|
__date__ = 'August 2012'
|
|
|
|
__copyright__ = '(C) 2012, Victor Olaya'
|
|
|
|
# This will get replaced with a git SHA1 when you do a git archive
|
|
|
|
__revision__ = '$Format:%H$'
|
|
|
|
|
2012-09-15 18:25:25 +03:00
|
|
|
import os.path
|
2012-09-28 15:00:06 +03:00
|
|
|
import math
|
|
|
|
|
2012-09-15 18:25:25 +03:00
|
|
|
from PyQt4 import QtGui
|
2012-09-28 15:00:06 +03:00
|
|
|
|
2012-09-15 18:25:25 +03:00
|
|
|
from qgis.core import *
|
2012-09-28 15:00:06 +03:00
|
|
|
|
|
|
|
from sextante.core.GeoAlgorithm import GeoAlgorithm
|
2012-09-15 18:25:25 +03:00
|
|
|
from sextante.core.QGisLayers import QGisLayers
|
2012-09-28 15:00:06 +03:00
|
|
|
|
|
|
|
from sextante.parameters.ParameterVector import ParameterVector
|
|
|
|
|
2012-09-15 18:25:25 +03:00
|
|
|
from sextante.outputs.OutputHTML import OutputHTML
|
2012-09-28 15:00:06 +03:00
|
|
|
from sextante.outputs.OutputNumber import OutputNumber
|
|
|
|
|
2012-12-20 00:16:05 +01:00
|
|
|
from sextante.algs.ftools import FToolsUtils as utils
|
2012-09-15 18:25:25 +03:00
|
|
|
|
|
|
|
class NearestNeighbourAnalysis(GeoAlgorithm):
|
|
|
|
|
|
|
|
POINTS = "POINTS"
|
2012-09-28 15:00:06 +03:00
|
|
|
|
2012-09-15 18:25:25 +03:00
|
|
|
OUTPUT = "OUTPUT"
|
|
|
|
|
2012-09-28 15:00:06 +03:00
|
|
|
OBSERVED_MD = "OBSERVED_MD"
|
|
|
|
EXPECTED_MD = "EXPECTED_MD"
|
|
|
|
NN_INDEX = "NN_INDEX"
|
|
|
|
POINT_COUNT = "POINT_COUNT"
|
|
|
|
Z_SCORE = "Z_SCORE"
|
|
|
|
|
2012-12-20 00:16:05 +01:00
|
|
|
#===========================================================================
|
|
|
|
# def getIcon(self):
|
|
|
|
# return QtGui.QIcon(os.path.dirname(__file__) + "/icons/neighbour.png")
|
|
|
|
#===========================================================================
|
2012-09-15 18:25:25 +03:00
|
|
|
|
2012-09-28 15:00:06 +03:00
|
|
|
def defineCharacteristics(self):
|
|
|
|
self.name = "Nearest neighbour analysis"
|
2012-12-20 00:16:05 +01:00
|
|
|
self.group = "Vector analysis tools"
|
2012-09-28 15:00:06 +03:00
|
|
|
|
|
|
|
self.addParameter(ParameterVector(self.POINTS, "Points", ParameterVector.VECTOR_TYPE_POINT))
|
|
|
|
|
|
|
|
self.addOutput(OutputHTML(self.OUTPUT, "Result"))
|
|
|
|
|
|
|
|
self.addOutput(OutputNumber(self.OBSERVED_MD, "Observed mean distance"))
|
|
|
|
self.addOutput(OutputNumber(self.EXPECTED_MD, "Expected mean distance"))
|
|
|
|
self.addOutput(OutputNumber(self.NN_INDEX, "Nearest neighbour index"))
|
|
|
|
self.addOutput(OutputNumber(self.POINT_COUNT, "Number of points"))
|
|
|
|
self.addOutput(OutputNumber(self.Z_SCORE, "Z-Score"))
|
|
|
|
|
|
|
|
|
2012-09-15 18:25:25 +03:00
|
|
|
def processAlgorithm(self, progress):
|
2012-09-28 15:00:06 +03:00
|
|
|
layer = QGisLayers.getObjectFromUri(self.getParameterValue(self.POINTS))
|
|
|
|
output = self.getOutputValue(self.OUTPUT)
|
|
|
|
|
|
|
|
provider = layer.dataProvider()
|
|
|
|
spatialIndex = utils.createSpatialIndex(provider)
|
|
|
|
provider.rewind()
|
|
|
|
provider.select()
|
|
|
|
|
2012-09-15 18:25:25 +03:00
|
|
|
feat = QgsFeature()
|
|
|
|
neighbour = QgsFeature()
|
|
|
|
distance = QgsDistanceArea()
|
2012-09-28 15:00:06 +03:00
|
|
|
|
|
|
|
sumDist = 0.00
|
|
|
|
A = layer.extent()
|
|
|
|
A = float(A.width() * A.height())
|
|
|
|
|
|
|
|
current = 0
|
|
|
|
total = 100.0 / float(provider.featureCount())
|
|
|
|
|
|
|
|
while provider.nextFeature( feat ):
|
|
|
|
neighbourID = spatialIndex.nearestNeighbor(feat.geometry().asPoint(), 2)[1]
|
|
|
|
provider.featureAtId(neighbourID, neighbour, True)
|
|
|
|
sumDist += distance.measureLine(neighbour.geometry().asPoint(), feat.geometry().asPoint())
|
|
|
|
|
|
|
|
current += 1
|
|
|
|
progress.setPercentage(int(current * total))
|
|
|
|
|
|
|
|
count = provider.featureCount()
|
|
|
|
do = float(sumDist) / count
|
|
|
|
de = float(0.5 / math.sqrt(count / A))
|
|
|
|
d = float(do / de)
|
|
|
|
SE = float(0.26136 / math.sqrt(( count ** 2) / A))
|
|
|
|
zscore = float((do - de) / SE)
|
|
|
|
|
|
|
|
data = []
|
|
|
|
data.append("Observed mean distance: " + unicode(do))
|
|
|
|
data.append("Expected mean distance: " + unicode(de))
|
|
|
|
data.append("Nearest neighbour index: " + unicode(d))
|
|
|
|
data.append("Number of points: " + unicode(count))
|
|
|
|
data.append("Z-Score: " + unicode(zscore))
|
|
|
|
|
|
|
|
self.createHTML(output, data)
|
|
|
|
|
|
|
|
self.setOutputValue(self.OBSERVED_MD, float( data[ 0 ].split( ": " )[ 1 ] ) )
|
|
|
|
self.setOutputValue(self.EXPECTED_MD, float( data[ 1 ].split( ": " )[ 1 ] ) )
|
|
|
|
self.setOutputValue(self.NN_INDEX, float( data[ 2 ].split( ": " )[ 1 ] ) )
|
|
|
|
self.setOutputValue(self.POINT_COUNT, float( data[ 3 ].split( ": " )[ 1 ] ) )
|
|
|
|
self.setOutputValue(self.Z_SCORE, float( data[ 4 ].split( ": " )[ 1 ] ) )
|
|
|
|
|
|
|
|
def createHTML(self, outputFile, algData):
|
2012-09-15 18:25:25 +03:00
|
|
|
f = open(outputFile, "w")
|
2012-09-28 15:00:06 +03:00
|
|
|
for s in algData:
|
2012-09-15 18:25:25 +03:00
|
|
|
f.write("<p>" + str(s) + "</p>")
|
|
|
|
f.close()
|