QGIS/python/plugins/processing/algs/qgis/NearestNeighbourAnalysis.py

133 lines
5.1 KiB
Python
Raw Normal View History

2012-10-04 19:33:47 +02:00
# -*- coding: utf-8 -*-
"""
***************************************************************************
NearestNeighbourAnalysis.py
---------------------
Date : August 2012
Copyright : (C) 2012 by Victor Olaya
Email : volayaf at gmail dot com
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
***************************************************************************
"""
__author__ = 'Victor Olaya'
__date__ = 'August 2012'
__copyright__ = '(C) 2012, Victor Olaya'
2012-10-04 19:33:47 +02:00
# This will get replaced with a git SHA1 when you do a git archive
2012-10-04 19:33:47 +02:00
__revision__ = '$Format:%H$'
import os
2012-09-28 15:00:06 +03:00
import math
import codecs
2016-04-22 10:38:48 +02:00
from qgis.PyQt.QtGui import QIcon
from qgis.core import QgsFeatureRequest, QgsFeature, QgsDistanceArea
2013-08-12 20:44:27 +02:00
from processing.core.GeoAlgorithm import GeoAlgorithm
from processing.core.parameters import ParameterVector
from processing.core.outputs import OutputHTML
from processing.core.outputs import OutputNumber
from processing.tools import dataobjects, vector
pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0]
2012-09-15 18:25:25 +03:00
class NearestNeighbourAnalysis(GeoAlgorithm):
POINTS = 'POINTS'
OUTPUT = 'OUTPUT'
OBSERVED_MD = 'OBSERVED_MD'
EXPECTED_MD = 'EXPECTED_MD'
NN_INDEX = 'NN_INDEX'
POINT_COUNT = 'POINT_COUNT'
Z_SCORE = 'Z_SCORE'
2012-09-28 15:00:06 +03:00
def getIcon(self):
return QIcon(os.path.join(pluginPath, 'images', 'ftools', 'neighbour.png'))
2012-09-28 15:00:06 +03:00
def defineCharacteristics(self):
self.name, self.i18n_name = self.trAlgorithm('Nearest neighbour analysis')
self.group, self.i18n_group = self.trAlgorithm('Vector analysis tools')
2012-09-28 15:00:06 +03:00
2015-01-15 20:41:15 +02:00
self.addParameter(ParameterVector(self.POINTS,
self.tr('Points'), [dataobjects.TYPE_VECTOR_POINT]))
2012-09-28 15:00:06 +03:00
self.addOutput(OutputHTML(self.OUTPUT, self.tr('Nearest neighbour')))
2012-09-28 15:00:06 +03:00
2015-01-15 20:41:15 +02:00
self.addOutput(OutputNumber(self.OBSERVED_MD,
self.tr('Observed mean distance')))
2015-01-15 20:41:15 +02:00
self.addOutput(OutputNumber(self.EXPECTED_MD,
self.tr('Expected mean distance')))
2015-01-15 20:41:15 +02:00
self.addOutput(OutputNumber(self.NN_INDEX,
self.tr('Nearest neighbour index')))
2015-01-15 20:41:15 +02:00
self.addOutput(OutputNumber(self.POINT_COUNT,
self.tr('Number of points')))
2015-01-15 20:41:15 +02:00
self.addOutput(OutputNumber(self.Z_SCORE, self.tr('Z-Score')))
2012-09-28 15:00:06 +03:00
2012-09-15 18:25:25 +03:00
def processAlgorithm(self, progress):
layer = dataobjects.getObjectFromUri(self.getParameterValue(self.POINTS))
2012-09-28 15:00:06 +03:00
output = self.getOutputValue(self.OUTPUT)
spatialIndex = vector.spatialindex(layer)
2012-09-15 18:25:25 +03:00
neighbour = QgsFeature()
distance = QgsDistanceArea()
2012-09-28 15:00:06 +03:00
sumDist = 0.00
A = layer.extent()
A = float(A.width() * A.height())
features = vector.features(layer)
count = len(features)
total = 100.0 / count
for current, feat in enumerate(features):
neighbourID = spatialIndex.nearestNeighbor(
feat.geometry().asPoint(), 2)[1]
request = QgsFeatureRequest().setFilterFid(neighbourID)
neighbour = layer.getFeatures(request).next()
sumDist += distance.measureLine(neighbour.geometry().asPoint(),
feat.geometry().asPoint())
2012-09-28 15:00:06 +03:00
progress.setPercentage(int(current * total))
2013-02-07 01:09:39 +01:00
2012-09-28 15:00:06 +03:00
do = float(sumDist) / count
de = float(0.5 / math.sqrt(count / A))
d = float(do / de)
SE = float(0.26136 / math.sqrt(count ** 2 / A))
2012-09-28 15:00:06 +03:00
zscore = float((do - de) / SE)
data = []
data.append('Observed mean distance: ' + unicode(do))
data.append('Expected mean distance: ' + unicode(de))
data.append('Nearest neighbour index: ' + unicode(d))
data.append('Number of points: ' + unicode(count))
data.append('Z-Score: ' + unicode(zscore))
2012-09-28 15:00:06 +03:00
self.createHTML(output, data)
self.setOutputValue(self.OBSERVED_MD, float(data[0].split(': ')[1]))
self.setOutputValue(self.EXPECTED_MD, float(data[1].split(': ')[1]))
self.setOutputValue(self.NN_INDEX, float(data[2].split(': ')[1]))
self.setOutputValue(self.POINT_COUNT, float(data[3].split(': ')[1]))
self.setOutputValue(self.Z_SCORE, float(data[4].split(': ')[1]))
2012-09-28 15:00:06 +03:00
def createHTML(self, outputFile, algData):
f = codecs.open(outputFile, 'w', encoding='utf-8')
f.write('<html><head>')
f.write('<meta http-equiv="Content-Type" content="text/html; \
charset=utf-8" /></head><body>')
2012-09-28 15:00:06 +03:00
for s in algData:
f.write('<p>' + unicode(s) + '</p>')
f.write('</body></html>')
2012-09-15 18:25:25 +03:00
f.close()