2013-01-05 08:25:21 -05:00

1032 lines
31 KiB
C

/*-------------------------------------------------------------------------
*
* parse_agg.c
* handle aggregates and window functions in parser
*
* Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/parser/parse_agg.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_constraint.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/tlist.h"
#include "parser/parse_agg.h"
#include "parser/parse_clause.h"
#include "parser/parse_expr.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
typedef struct
{
ParseState *pstate;
int min_varlevel;
int min_agglevel;
int sublevels_up;
} check_agg_arguments_context;
typedef struct
{
ParseState *pstate;
Query *qry;
List *groupClauses;
bool have_non_var_grouping;
List **func_grouped_rels;
int sublevels_up;
} check_ungrouped_columns_context;
static int check_agg_arguments(ParseState *pstate, List *args);
static bool check_agg_arguments_walker(Node *node,
check_agg_arguments_context *context);
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, bool have_non_var_grouping,
List **func_grouped_rels);
static bool check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context);
/*
* transformAggregateCall -
* Finish initial transformation of an aggregate call
*
* parse_func.c has recognized the function as an aggregate, and has set up
* all the fields of the Aggref except args, aggorder, aggdistinct and
* agglevelsup. The passed-in args list has been through standard expression
* transformation, while the passed-in aggorder list hasn't been transformed
* at all.
*
* Here we convert the args list into a targetlist by inserting TargetEntry
* nodes, and then transform the aggorder and agg_distinct specifications to
* produce lists of SortGroupClause nodes. (That might also result in adding
* resjunk expressions to the targetlist.)
*
* We must also determine which query level the aggregate actually belongs to,
* set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
* pstate level.
*/
void
transformAggregateCall(ParseState *pstate, Aggref *agg,
List *args, List *aggorder, bool agg_distinct)
{
List *tlist;
List *torder;
List *tdistinct = NIL;
AttrNumber attno;
int save_next_resno;
int min_varlevel;
ListCell *lc;
const char *err;
bool errkind;
/*
* Transform the plain list of Exprs into a targetlist. We don't bother
* to assign column names to the entries.
*/
tlist = NIL;
attno = 1;
foreach(lc, args)
{
Expr *arg = (Expr *) lfirst(lc);
TargetEntry *tle = makeTargetEntry(arg, attno++, NULL, false);
tlist = lappend(tlist, tle);
}
/*
* If we have an ORDER BY, transform it. This will add columns to the
* tlist if they appear in ORDER BY but weren't already in the arg list.
* They will be marked resjunk = true so we can tell them apart from
* regular aggregate arguments later.
*
* We need to mess with p_next_resno since it will be used to number any
* new targetlist entries.
*/
save_next_resno = pstate->p_next_resno;
pstate->p_next_resno = attno;
torder = transformSortClause(pstate,
aggorder,
&tlist,
EXPR_KIND_ORDER_BY,
true /* fix unknowns */ ,
true /* force SQL99 rules */ );
/*
* If we have DISTINCT, transform that to produce a distinctList.
*/
if (agg_distinct)
{
tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
/*
* Remove this check if executor support for hashed distinct for
* aggregates is ever added.
*/
foreach(lc, tdistinct)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
if (!OidIsValid(sortcl->sortop))
{
Node *expr = get_sortgroupclause_expr(sortcl, tlist);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an ordering operator for type %s",
format_type_be(exprType(expr))),
errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
parser_errposition(pstate, exprLocation(expr))));
}
}
}
/* Update the Aggref with the transformation results */
agg->args = tlist;
agg->aggorder = torder;
agg->aggdistinct = tdistinct;
pstate->p_next_resno = save_next_resno;
/*
* Check the arguments to compute the aggregate's level and detect
* improper nesting.
*/
min_varlevel = check_agg_arguments(pstate, agg->args);
agg->agglevelsup = min_varlevel;
/* Mark the correct pstate level as having aggregates */
while (min_varlevel-- > 0)
pstate = pstate->parentParseState;
pstate->p_hasAggs = true;
/*
* Check to see if the aggregate function is in an invalid place within
* its aggregation query.
*
* For brevity we support two schemes for reporting an error here: set
* "err" to a custom message, or set "errkind" true if the error context
* is sufficiently identified by what ParseExprKindName will return, *and*
* what it will return is just a SQL keyword. (Otherwise, use a custom
* message to avoid creating translation problems.)
*/
err = NULL;
errkind = false;
switch (pstate->p_expr_kind)
{
case EXPR_KIND_NONE:
Assert(false); /* can't happen */
break;
case EXPR_KIND_OTHER:
/* Accept aggregate here; caller must throw error if wanted */
break;
case EXPR_KIND_JOIN_ON:
case EXPR_KIND_JOIN_USING:
err = _("aggregate functions are not allowed in JOIN conditions");
break;
case EXPR_KIND_FROM_SUBSELECT:
/* Should only be possible in a LATERAL subquery */
Assert(pstate->p_lateral_active);
/* Aggregate scope rules make it worth being explicit here */
err = _("aggregate functions are not allowed in FROM clause of their own query level");
break;
case EXPR_KIND_FROM_FUNCTION:
err = _("aggregate functions are not allowed in functions in FROM");
break;
case EXPR_KIND_WHERE:
errkind = true;
break;
case EXPR_KIND_HAVING:
/* okay */
break;
case EXPR_KIND_WINDOW_PARTITION:
/* okay */
break;
case EXPR_KIND_WINDOW_ORDER:
/* okay */
break;
case EXPR_KIND_WINDOW_FRAME_RANGE:
err = _("aggregate functions are not allowed in window RANGE");
break;
case EXPR_KIND_WINDOW_FRAME_ROWS:
err = _("aggregate functions are not allowed in window ROWS");
break;
case EXPR_KIND_SELECT_TARGET:
/* okay */
break;
case EXPR_KIND_INSERT_TARGET:
case EXPR_KIND_UPDATE_SOURCE:
case EXPR_KIND_UPDATE_TARGET:
errkind = true;
break;
case EXPR_KIND_GROUP_BY:
errkind = true;
break;
case EXPR_KIND_ORDER_BY:
/* okay */
break;
case EXPR_KIND_DISTINCT_ON:
/* okay */
break;
case EXPR_KIND_LIMIT:
case EXPR_KIND_OFFSET:
errkind = true;
break;
case EXPR_KIND_RETURNING:
errkind = true;
break;
case EXPR_KIND_VALUES:
errkind = true;
break;
case EXPR_KIND_CHECK_CONSTRAINT:
case EXPR_KIND_DOMAIN_CHECK:
err = _("aggregate functions are not allowed in check constraints");
break;
case EXPR_KIND_COLUMN_DEFAULT:
case EXPR_KIND_FUNCTION_DEFAULT:
err = _("aggregate functions are not allowed in DEFAULT expressions");
break;
case EXPR_KIND_INDEX_EXPRESSION:
err = _("aggregate functions are not allowed in index expressions");
break;
case EXPR_KIND_INDEX_PREDICATE:
err = _("aggregate functions are not allowed in index predicates");
break;
case EXPR_KIND_ALTER_COL_TRANSFORM:
err = _("aggregate functions are not allowed in transform expressions");
break;
case EXPR_KIND_EXECUTE_PARAMETER:
err = _("aggregate functions are not allowed in EXECUTE parameters");
break;
case EXPR_KIND_TRIGGER_WHEN:
err = _("aggregate functions are not allowed in trigger WHEN conditions");
break;
/*
* There is intentionally no default: case here, so that the
* compiler will warn if we add a new ParseExprKind without
* extending this switch. If we do see an unrecognized value at
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
* which is sane anyway.
*/
}
if (err)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg_internal("%s", err),
parser_errposition(pstate, agg->location)));
if (errkind)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
/* translator: %s is name of a SQL construct, eg GROUP BY */
errmsg("aggregate functions are not allowed in %s",
ParseExprKindName(pstate->p_expr_kind)),
parser_errposition(pstate, agg->location)));
}
/*
* check_agg_arguments
* Scan the arguments of an aggregate function to determine the
* aggregate's semantic level (zero is the current select's level,
* one is its parent, etc).
*
* The aggregate's level is the same as the level of the lowest-level variable
* or aggregate in its arguments; or if it contains no variables at all, we
* presume it to be local.
*
* We also take this opportunity to detect any aggregates or window functions
* nested within the arguments. We can throw error immediately if we find
* a window function. Aggregates are a bit trickier because it's only an
* error if the inner aggregate is of the same semantic level as the outer,
* which we can't know until we finish scanning the arguments.
*/
static int
check_agg_arguments(ParseState *pstate, List *args)
{
int agglevel;
check_agg_arguments_context context;
context.pstate = pstate;
context.min_varlevel = -1; /* signifies nothing found yet */
context.min_agglevel = -1;
context.sublevels_up = 0;
(void) expression_tree_walker((Node *) args,
check_agg_arguments_walker,
(void *) &context);
/*
* If we found no vars nor aggs at all, it's a level-zero aggregate;
* otherwise, its level is the minimum of vars or aggs.
*/
if (context.min_varlevel < 0)
{
if (context.min_agglevel < 0)
return 0;
agglevel = context.min_agglevel;
}
else if (context.min_agglevel < 0)
agglevel = context.min_varlevel;
else
agglevel = Min(context.min_varlevel, context.min_agglevel);
/*
* If there's a nested aggregate of the same semantic level, complain.
*/
if (agglevel == context.min_agglevel)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
parser_errposition(pstate,
locate_agg_of_level((Node *) args,
agglevel))));
return agglevel;
}
static bool
check_agg_arguments_walker(Node *node,
check_agg_arguments_context *context)
{
if (node == NULL)
return false;
if (IsA(node, Var))
{
int varlevelsup = ((Var *) node)->varlevelsup;
/* convert levelsup to frame of reference of original query */
varlevelsup -= context->sublevels_up;
/* ignore local vars of subqueries */
if (varlevelsup >= 0)
{
if (context->min_varlevel < 0 ||
context->min_varlevel > varlevelsup)
context->min_varlevel = varlevelsup;
}
return false;
}
if (IsA(node, Aggref))
{
int agglevelsup = ((Aggref *) node)->agglevelsup;
/* convert levelsup to frame of reference of original query */
agglevelsup -= context->sublevels_up;
/* ignore local aggs of subqueries */
if (agglevelsup >= 0)
{
if (context->min_agglevel < 0 ||
context->min_agglevel > agglevelsup)
context->min_agglevel = agglevelsup;
}
/* no need to examine args of the inner aggregate */
return false;
}
/* We can throw error on sight for a window function */
if (IsA(node, WindowFunc))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot contain window function calls"),
parser_errposition(context->pstate,
((WindowFunc *) node)->location)));
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
check_agg_arguments_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node,
check_agg_arguments_walker,
(void *) context);
}
/*
* transformWindowFuncCall -
* Finish initial transformation of a window function call
*
* parse_func.c has recognized the function as a window function, and has set
* up all the fields of the WindowFunc except winref. Here we must (1) add
* the WindowDef to the pstate (if not a duplicate of one already present) and
* set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
* Unlike aggregates, only the most closely nested pstate level need be
* considered --- there are no "outer window functions" per SQL spec.
*/
void
transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
WindowDef *windef)
{
const char *err;
bool errkind;
/*
* A window function call can't contain another one (but aggs are OK). XXX
* is this required by spec, or just an unimplemented feature?
*/
if (pstate->p_hasWindowFuncs &&
contain_windowfuncs((Node *) wfunc->args))
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg("window function calls cannot be nested"),
parser_errposition(pstate,
locate_windowfunc((Node *) wfunc->args))));
/*
* Check to see if the window function is in an invalid place within the
* query.
*
* For brevity we support two schemes for reporting an error here: set
* "err" to a custom message, or set "errkind" true if the error context
* is sufficiently identified by what ParseExprKindName will return, *and*
* what it will return is just a SQL keyword. (Otherwise, use a custom
* message to avoid creating translation problems.)
*/
err = NULL;
errkind = false;
switch (pstate->p_expr_kind)
{
case EXPR_KIND_NONE:
Assert(false); /* can't happen */
break;
case EXPR_KIND_OTHER:
/* Accept window func here; caller must throw error if wanted */
break;
case EXPR_KIND_JOIN_ON:
case EXPR_KIND_JOIN_USING:
err = _("window functions are not allowed in JOIN conditions");
break;
case EXPR_KIND_FROM_SUBSELECT:
/* can't get here, but just in case, throw an error */
errkind = true;
break;
case EXPR_KIND_FROM_FUNCTION:
err = _("window functions are not allowed in functions in FROM");
break;
case EXPR_KIND_WHERE:
errkind = true;
break;
case EXPR_KIND_HAVING:
errkind = true;
break;
case EXPR_KIND_WINDOW_PARTITION:
case EXPR_KIND_WINDOW_ORDER:
case EXPR_KIND_WINDOW_FRAME_RANGE:
case EXPR_KIND_WINDOW_FRAME_ROWS:
err = _("window functions are not allowed in window definitions");
break;
case EXPR_KIND_SELECT_TARGET:
/* okay */
break;
case EXPR_KIND_INSERT_TARGET:
case EXPR_KIND_UPDATE_SOURCE:
case EXPR_KIND_UPDATE_TARGET:
errkind = true;
break;
case EXPR_KIND_GROUP_BY:
errkind = true;
break;
case EXPR_KIND_ORDER_BY:
/* okay */
break;
case EXPR_KIND_DISTINCT_ON:
/* okay */
break;
case EXPR_KIND_LIMIT:
case EXPR_KIND_OFFSET:
errkind = true;
break;
case EXPR_KIND_RETURNING:
errkind = true;
break;
case EXPR_KIND_VALUES:
errkind = true;
break;
case EXPR_KIND_CHECK_CONSTRAINT:
case EXPR_KIND_DOMAIN_CHECK:
err = _("window functions are not allowed in check constraints");
break;
case EXPR_KIND_COLUMN_DEFAULT:
case EXPR_KIND_FUNCTION_DEFAULT:
err = _("window functions are not allowed in DEFAULT expressions");
break;
case EXPR_KIND_INDEX_EXPRESSION:
err = _("window functions are not allowed in index expressions");
break;
case EXPR_KIND_INDEX_PREDICATE:
err = _("window functions are not allowed in index predicates");
break;
case EXPR_KIND_ALTER_COL_TRANSFORM:
err = _("window functions are not allowed in transform expressions");
break;
case EXPR_KIND_EXECUTE_PARAMETER:
err = _("window functions are not allowed in EXECUTE parameters");
break;
case EXPR_KIND_TRIGGER_WHEN:
err = _("window functions are not allowed in trigger WHEN conditions");
break;
/*
* There is intentionally no default: case here, so that the
* compiler will warn if we add a new ParseExprKind without
* extending this switch. If we do see an unrecognized value at
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
* which is sane anyway.
*/
}
if (err)
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg_internal("%s", err),
parser_errposition(pstate, wfunc->location)));
if (errkind)
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
/* translator: %s is name of a SQL construct, eg GROUP BY */
errmsg("window functions are not allowed in %s",
ParseExprKindName(pstate->p_expr_kind)),
parser_errposition(pstate, wfunc->location)));
/*
* If the OVER clause just specifies a window name, find that WINDOW
* clause (which had better be present). Otherwise, try to match all the
* properties of the OVER clause, and make a new entry in the p_windowdefs
* list if no luck.
*/
if (windef->name)
{
Index winref = 0;
ListCell *lc;
Assert(windef->refname == NULL &&
windef->partitionClause == NIL &&
windef->orderClause == NIL &&
windef->frameOptions == FRAMEOPTION_DEFAULTS);
foreach(lc, pstate->p_windowdefs)
{
WindowDef *refwin = (WindowDef *) lfirst(lc);
winref++;
if (refwin->name && strcmp(refwin->name, windef->name) == 0)
{
wfunc->winref = winref;
break;
}
}
if (lc == NULL) /* didn't find it? */
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("window \"%s\" does not exist", windef->name),
parser_errposition(pstate, windef->location)));
}
else
{
Index winref = 0;
ListCell *lc;
foreach(lc, pstate->p_windowdefs)
{
WindowDef *refwin = (WindowDef *) lfirst(lc);
winref++;
if (refwin->refname && windef->refname &&
strcmp(refwin->refname, windef->refname) == 0)
/* matched on refname */ ;
else if (!refwin->refname && !windef->refname)
/* matched, no refname */ ;
else
continue;
if (equal(refwin->partitionClause, windef->partitionClause) &&
equal(refwin->orderClause, windef->orderClause) &&
refwin->frameOptions == windef->frameOptions &&
equal(refwin->startOffset, windef->startOffset) &&
equal(refwin->endOffset, windef->endOffset))
{
/* found a duplicate window specification */
wfunc->winref = winref;
break;
}
}
if (lc == NULL) /* didn't find it? */
{
pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
wfunc->winref = list_length(pstate->p_windowdefs);
}
}
pstate->p_hasWindowFuncs = true;
}
/*
* parseCheckAggregates
* Check for aggregates where they shouldn't be and improper grouping.
* This function should be called after the target list and qualifications
* are finalized.
*
* Misplaced aggregates are now mostly detected in transformAggregateCall,
* but it seems more robust to check for aggregates in recursive queries
* only after everything is finalized. In any case it's hard to detect
* improper grouping on-the-fly, so we have to make another pass over the
* query for that.
*/
void
parseCheckAggregates(ParseState *pstate, Query *qry)
{
List *groupClauses = NIL;
bool have_non_var_grouping;
List *func_grouped_rels = NIL;
ListCell *l;
bool hasJoinRTEs;
bool hasSelfRefRTEs;
PlannerInfo *root;
Node *clause;
/* This should only be called if we found aggregates or grouping */
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual);
/*
* Scan the range table to see if there are JOIN or self-reference CTE
* entries. We'll need this info below.
*/
hasJoinRTEs = hasSelfRefRTEs = false;
foreach(l, pstate->p_rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
hasJoinRTEs = true;
else if (rte->rtekind == RTE_CTE && rte->self_reference)
hasSelfRefRTEs = true;
}
/*
* Build a list of the acceptable GROUP BY expressions for use by
* check_ungrouped_columns().
*/
foreach(l, qry->groupClause)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
Node *expr;
expr = get_sortgroupclause_expr(grpcl, qry->targetList);
if (expr == NULL)
continue; /* probably cannot happen */
groupClauses = lcons(expr, groupClauses);
}
/*
* If there are join alias vars involved, we have to flatten them to the
* underlying vars, so that aliased and unaliased vars will be correctly
* taken as equal. We can skip the expense of doing this if no rangetable
* entries are RTE_JOIN kind. We use the planner's flatten_join_alias_vars
* routine to do the flattening; it wants a PlannerInfo root node, which
* fortunately can be mostly dummy.
*/
if (hasJoinRTEs)
{
root = makeNode(PlannerInfo);
root->parse = qry;
root->planner_cxt = CurrentMemoryContext;
root->hasJoinRTEs = true;
groupClauses = (List *) flatten_join_alias_vars(root,
(Node *) groupClauses);
}
else
root = NULL; /* keep compiler quiet */
/*
* Detect whether any of the grouping expressions aren't simple Vars; if
* they're all Vars then we don't have to work so hard in the recursive
* scans. (Note we have to flatten aliases before this.)
*/
have_non_var_grouping = false;
foreach(l, groupClauses)
{
if (!IsA((Node *) lfirst(l), Var))
{
have_non_var_grouping = true;
break;
}
}
/*
* Check the targetlist and HAVING clause for ungrouped variables.
*
* Note: because we check resjunk tlist elements as well as regular ones,
* this will also find ungrouped variables that came from ORDER BY and
* WINDOW clauses. For that matter, it's also going to examine the
* grouping expressions themselves --- but they'll all pass the test ...
*/
clause = (Node *) qry->targetList;
if (hasJoinRTEs)
clause = flatten_join_alias_vars(root, clause);
check_ungrouped_columns(clause, pstate, qry,
groupClauses, have_non_var_grouping,
&func_grouped_rels);
clause = (Node *) qry->havingQual;
if (hasJoinRTEs)
clause = flatten_join_alias_vars(root, clause);
check_ungrouped_columns(clause, pstate, qry,
groupClauses, have_non_var_grouping,
&func_grouped_rels);
/*
* Per spec, aggregates can't appear in a recursive term.
*/
if (pstate->p_hasAggs && hasSelfRefRTEs)
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
parser_errposition(pstate,
locate_agg_of_level((Node *) qry, 0))));
}
/*
* check_ungrouped_columns -
* Scan the given expression tree for ungrouped variables (variables
* that are not listed in the groupClauses list and are not within
* the arguments of aggregate functions). Emit a suitable error message
* if any are found.
*
* NOTE: we assume that the given clause has been transformed suitably for
* parser output. This means we can use expression_tree_walker.
*
* NOTE: we recognize grouping expressions in the main query, but only
* grouping Vars in subqueries. For example, this will be rejected,
* although it could be allowed:
* SELECT
* (SELECT x FROM bar where y = (foo.a + foo.b))
* FROM foo
* GROUP BY a + b;
* The difficulty is the need to account for different sublevels_up.
* This appears to require a whole custom version of equal(), which is
* way more pain than the feature seems worth.
*/
static void
check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, bool have_non_var_grouping,
List **func_grouped_rels)
{
check_ungrouped_columns_context context;
context.pstate = pstate;
context.qry = qry;
context.groupClauses = groupClauses;
context.have_non_var_grouping = have_non_var_grouping;
context.func_grouped_rels = func_grouped_rels;
context.sublevels_up = 0;
check_ungrouped_columns_walker(node, &context);
}
static bool
check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context)
{
ListCell *gl;
if (node == NULL)
return false;
if (IsA(node, Const) ||
IsA(node, Param))
return false; /* constants are always acceptable */
/*
* If we find an aggregate call of the original level, do not recurse into
* its arguments; ungrouped vars in the arguments are not an error. We can
* also skip looking at the arguments of aggregates of higher levels,
* since they could not possibly contain Vars that are of concern to us
* (see transformAggregateCall). We do need to look into the arguments of
* aggregates of lower levels, however.
*/
if (IsA(node, Aggref) &&
(int) ((Aggref *) node)->agglevelsup >= context->sublevels_up)
return false;
/*
* If we have any GROUP BY items that are not simple Vars, check to see if
* subexpression as a whole matches any GROUP BY item. We need to do this
* at every recursion level so that we recognize GROUPed-BY expressions
* before reaching variables within them. But this only works at the outer
* query level, as noted above.
*/
if (context->have_non_var_grouping && context->sublevels_up == 0)
{
foreach(gl, context->groupClauses)
{
if (equal(node, lfirst(gl)))
return false; /* acceptable, do not descend more */
}
}
/*
* If we have an ungrouped Var of the original query level, we have a
* failure. Vars below the original query level are not a problem, and
* neither are Vars from above it. (If such Vars are ungrouped as far as
* their own query level is concerned, that's someone else's problem...)
*/
if (IsA(node, Var))
{
Var *var = (Var *) node;
RangeTblEntry *rte;
char *attname;
if (var->varlevelsup != context->sublevels_up)
return false; /* it's not local to my query, ignore */
/*
* Check for a match, if we didn't do it above.
*/
if (!context->have_non_var_grouping || context->sublevels_up != 0)
{
foreach(gl, context->groupClauses)
{
Var *gvar = (Var *) lfirst(gl);
if (IsA(gvar, Var) &&
gvar->varno == var->varno &&
gvar->varattno == var->varattno &&
gvar->varlevelsup == 0)
return false; /* acceptable, we're okay */
}
}
/*
* Check whether the Var is known functionally dependent on the GROUP
* BY columns. If so, we can allow the Var to be used, because the
* grouping is really a no-op for this table. However, this deduction
* depends on one or more constraints of the table, so we have to add
* those constraints to the query's constraintDeps list, because it's
* not semantically valid anymore if the constraint(s) get dropped.
* (Therefore, this check must be the last-ditch effort before raising
* error: we don't want to add dependencies unnecessarily.)
*
* Because this is a pretty expensive check, and will have the same
* outcome for all columns of a table, we remember which RTEs we've
* already proven functional dependency for in the func_grouped_rels
* list. This test also prevents us from adding duplicate entries to
* the constraintDeps list.
*/
if (list_member_int(*context->func_grouped_rels, var->varno))
return false; /* previously proven acceptable */
Assert(var->varno > 0 &&
(int) var->varno <= list_length(context->pstate->p_rtable));
rte = rt_fetch(var->varno, context->pstate->p_rtable);
if (rte->rtekind == RTE_RELATION)
{
if (check_functional_grouping(rte->relid,
var->varno,
0,
context->groupClauses,
&context->qry->constraintDeps))
{
*context->func_grouped_rels =
lappend_int(*context->func_grouped_rels, var->varno);
return false; /* acceptable */
}
}
/* Found an ungrouped local variable; generate error message */
attname = get_rte_attribute_name(rte, var->varattno);
if (context->sublevels_up == 0)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
rte->eref->aliasname, attname),
parser_errposition(context->pstate, var->location)));
else
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
rte->eref->aliasname, attname),
parser_errposition(context->pstate, var->location)));
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
check_ungrouped_columns_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node, check_ungrouped_columns_walker,
(void *) context);
}
/*
* Create expression trees for the transition and final functions
* of an aggregate. These are needed so that polymorphic functions
* can be used within an aggregate --- without the expression trees,
* such functions would not know the datatypes they are supposed to use.
* (The trees will never actually be executed, however, so we can skimp
* a bit on correctness.)
*
* agg_input_types, agg_state_type, agg_result_type identify the input,
* transition, and result types of the aggregate. These should all be
* resolved to actual types (ie, none should ever be ANYELEMENT etc).
* agg_input_collation is the aggregate function's input collation.
*
* transfn_oid and finalfn_oid identify the funcs to be called; the latter
* may be InvalidOid.
*
* Pointers to the constructed trees are returned into *transfnexpr and
* *finalfnexpr. The latter is set to NULL if there's no finalfn.
*/
void
build_aggregate_fnexprs(Oid *agg_input_types,
int agg_num_inputs,
Oid agg_state_type,
Oid agg_result_type,
Oid agg_input_collation,
Oid transfn_oid,
Oid finalfn_oid,
Expr **transfnexpr,
Expr **finalfnexpr)
{
Param *argp;
List *args;
int i;
/*
* Build arg list to use in the transfn FuncExpr node. We really only care
* that transfn can discover the actual argument types at runtime using
* get_fn_expr_argtype(), so it's okay to use Param nodes that don't
* correspond to any real Param.
*/
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_state_type;
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = list_make1(argp);
for (i = 0; i < agg_num_inputs; i++)
{
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_input_types[i];
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = lappend(args, argp);
}
*transfnexpr = (Expr *) makeFuncExpr(transfn_oid,
agg_state_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
/* see if we have a final function */
if (!OidIsValid(finalfn_oid))
{
*finalfnexpr = NULL;
return;
}
/*
* Build expr tree for final function
*/
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_state_type;
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = list_make1(argp);
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
agg_result_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
}