PostgreSQL/src/backend/executor/execGrouping.c
PostgreSQL Daemon 2ff501590b Tag appropriate files for rc3
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
2004-12-31 22:04:05 +00:00

485 lines
13 KiB
C

/*-------------------------------------------------------------------------
*
* execGrouping.c
* executor utility routines for grouping, hashing, and aggregation
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/executor/execGrouping.c,v 1.13 2004/12/31 21:59:45 pgsql Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
#include "access/heapam.h"
#include "executor/executor.h"
#include "parser/parse_oper.h"
#include "utils/memutils.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static TupleHashTable CurTupleHashTable = NULL;
static uint32 TupleHashTableHash(const void *key, Size keysize);
static int TupleHashTableMatch(const void *key1, const void *key2,
Size keysize);
/*****************************************************************************
* Utility routines for grouping tuples together
*****************************************************************************/
/*
* execTuplesMatch
* Return true if two tuples match in all the indicated fields.
*
* This actually implements SQL's notion of "not distinct". Two nulls
* match, a null and a not-null don't match.
*
* tuple1, tuple2: the tuples to compare
* tupdesc: tuple descriptor applying to both tuples
* numCols: the number of attributes to be examined
* matchColIdx: array of attribute column numbers
* eqFunctions: array of fmgr lookup info for the equality functions to use
* evalContext: short-term memory context for executing the functions
*
* NB: evalContext is reset each time!
*/
bool
execTuplesMatch(HeapTuple tuple1,
HeapTuple tuple2,
TupleDesc tupdesc,
int numCols,
AttrNumber *matchColIdx,
FmgrInfo *eqfunctions,
MemoryContext evalContext)
{
MemoryContext oldContext;
bool result;
int i;
/* Reset and switch into the temp context. */
MemoryContextReset(evalContext);
oldContext = MemoryContextSwitchTo(evalContext);
/*
* We cannot report a match without checking all the fields, but we
* can report a non-match as soon as we find unequal fields. So,
* start comparing at the last field (least significant sort key).
* That's the most likely to be different if we are dealing with
* sorted input.
*/
result = true;
for (i = numCols; --i >= 0;)
{
AttrNumber att = matchColIdx[i];
Datum attr1,
attr2;
bool isNull1,
isNull2;
attr1 = heap_getattr(tuple1,
att,
tupdesc,
&isNull1);
attr2 = heap_getattr(tuple2,
att,
tupdesc,
&isNull2);
if (isNull1 != isNull2)
{
result = false; /* one null and one not; they aren't equal */
break;
}
if (isNull1)
continue; /* both are null, treat as equal */
/* Apply the type-specific equality function */
if (!DatumGetBool(FunctionCall2(&eqfunctions[i],
attr1, attr2)))
{
result = false; /* they aren't equal */
break;
}
}
MemoryContextSwitchTo(oldContext);
return result;
}
/*
* execTuplesUnequal
* Return true if two tuples are definitely unequal in the indicated
* fields.
*
* Nulls are neither equal nor unequal to anything else. A true result
* is obtained only if there are non-null fields that compare not-equal.
*
* Parameters are identical to execTuplesMatch.
*/
bool
execTuplesUnequal(HeapTuple tuple1,
HeapTuple tuple2,
TupleDesc tupdesc,
int numCols,
AttrNumber *matchColIdx,
FmgrInfo *eqfunctions,
MemoryContext evalContext)
{
MemoryContext oldContext;
bool result;
int i;
/* Reset and switch into the temp context. */
MemoryContextReset(evalContext);
oldContext = MemoryContextSwitchTo(evalContext);
/*
* We cannot report a match without checking all the fields, but we
* can report a non-match as soon as we find unequal fields. So,
* start comparing at the last field (least significant sort key).
* That's the most likely to be different if we are dealing with
* sorted input.
*/
result = false;
for (i = numCols; --i >= 0;)
{
AttrNumber att = matchColIdx[i];
Datum attr1,
attr2;
bool isNull1,
isNull2;
attr1 = heap_getattr(tuple1,
att,
tupdesc,
&isNull1);
if (isNull1)
continue; /* can't prove anything here */
attr2 = heap_getattr(tuple2,
att,
tupdesc,
&isNull2);
if (isNull2)
continue; /* can't prove anything here */
/* Apply the type-specific equality function */
if (!DatumGetBool(FunctionCall2(&eqfunctions[i],
attr1, attr2)))
{
result = true; /* they are unequal */
break;
}
}
MemoryContextSwitchTo(oldContext);
return result;
}
/*
* execTuplesMatchPrepare
* Look up the equality functions needed for execTuplesMatch or
* execTuplesUnequal.
*
* The result is a palloc'd array.
*/
FmgrInfo *
execTuplesMatchPrepare(TupleDesc tupdesc,
int numCols,
AttrNumber *matchColIdx)
{
FmgrInfo *eqfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
int i;
for (i = 0; i < numCols; i++)
{
AttrNumber att = matchColIdx[i];
Oid typid = tupdesc->attrs[att - 1]->atttypid;
Oid eq_function;
eq_function = equality_oper_funcid(typid);
fmgr_info(eq_function, &eqfunctions[i]);
}
return eqfunctions;
}
/*
* execTuplesHashPrepare
* Look up the equality and hashing functions needed for a TupleHashTable.
*
* This is similar to execTuplesMatchPrepare, but we also need to find the
* hash functions associated with the equality operators. *eqfunctions and
* *hashfunctions receive the palloc'd result arrays.
*/
void
execTuplesHashPrepare(TupleDesc tupdesc,
int numCols,
AttrNumber *matchColIdx,
FmgrInfo **eqfunctions,
FmgrInfo **hashfunctions)
{
int i;
*eqfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
*hashfunctions = (FmgrInfo *) palloc(numCols * sizeof(FmgrInfo));
for (i = 0; i < numCols; i++)
{
AttrNumber att = matchColIdx[i];
Oid typid = tupdesc->attrs[att - 1]->atttypid;
Operator optup;
Oid eq_opr;
Oid eq_function;
Oid hash_function;
optup = equality_oper(typid, false);
eq_opr = oprid(optup);
eq_function = oprfuncid(optup);
ReleaseSysCache(optup);
hash_function = get_op_hash_function(eq_opr);
if (!OidIsValid(hash_function)) /* should not happen */
elog(ERROR, "could not find hash function for hash operator %u",
eq_opr);
fmgr_info(eq_function, &(*eqfunctions)[i]);
fmgr_info(hash_function, &(*hashfunctions)[i]);
}
}
/*****************************************************************************
* Utility routines for all-in-memory hash tables
*
* These routines build hash tables for grouping tuples together (eg, for
* hash aggregation). There is one entry for each not-distinct set of tuples
* presented.
*****************************************************************************/
/*
* Construct an empty TupleHashTable
*
* numCols, keyColIdx: identify the tuple fields to use as lookup key
* eqfunctions: equality comparison functions to use
* hashfunctions: datatype-specific hashing functions to use
* nbuckets: initial estimate of hashtable size
* entrysize: size of each entry (at least sizeof(TupleHashEntryData))
* tablecxt: memory context in which to store table and table entries
* tempcxt: short-lived context for evaluation hash and comparison functions
*
* The function arrays may be made with execTuplesHashPrepare().
*
* Note that keyColIdx, eqfunctions, and hashfunctions must be allocated in
* storage that will live as long as the hashtable does.
*/
TupleHashTable
BuildTupleHashTable(int numCols, AttrNumber *keyColIdx,
FmgrInfo *eqfunctions,
FmgrInfo *hashfunctions,
int nbuckets, Size entrysize,
MemoryContext tablecxt, MemoryContext tempcxt)
{
TupleHashTable hashtable;
HASHCTL hash_ctl;
Assert(nbuckets > 0);
Assert(entrysize >= sizeof(TupleHashEntryData));
hashtable = (TupleHashTable) MemoryContextAlloc(tablecxt,
sizeof(TupleHashTableData));
hashtable->numCols = numCols;
hashtable->keyColIdx = keyColIdx;
hashtable->eqfunctions = eqfunctions;
hashtable->hashfunctions = hashfunctions;
hashtable->tablecxt = tablecxt;
hashtable->tempcxt = tempcxt;
hashtable->entrysize = entrysize;
MemSet(&hash_ctl, 0, sizeof(hash_ctl));
hash_ctl.keysize = sizeof(TupleHashEntryData);
hash_ctl.entrysize = entrysize;
hash_ctl.hash = TupleHashTableHash;
hash_ctl.match = TupleHashTableMatch;
hash_ctl.hcxt = tablecxt;
hashtable->hashtab = hash_create("TupleHashTable", (long) nbuckets,
&hash_ctl,
HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
return hashtable;
}
/*
* Find or create a hashtable entry for the tuple group containing the
* given tuple.
*
* If isnew is NULL, we do not create new entries; we return NULL if no
* match is found.
*
* If isnew isn't NULL, then a new entry is created if no existing entry
* matches. On return, *isnew is true if the entry is newly created,
* false if it existed already. Any extra space in a new entry has been
* zeroed.
*/
TupleHashEntry
LookupTupleHashEntry(TupleHashTable hashtable, TupleTableSlot *slot,
bool *isnew)
{
HeapTuple tuple = slot->val;
TupleDesc tupdesc = slot->ttc_tupleDescriptor;
TupleHashEntry entry;
MemoryContext oldContext;
TupleHashTable saveCurHT;
bool found;
/* Need to run the hash functions in short-lived context */
oldContext = MemoryContextSwitchTo(hashtable->tempcxt);
/*
* Set up data needed by hash and match functions
*
* We save and restore CurTupleHashTable just in case someone manages to
* invoke this code re-entrantly.
*/
hashtable->tupdesc = tupdesc;
saveCurHT = CurTupleHashTable;
CurTupleHashTable = hashtable;
/* Search the hash table */
entry = (TupleHashEntry) hash_search(hashtable->hashtab,
&tuple,
isnew ? HASH_ENTER : HASH_FIND,
&found);
if (isnew)
{
if (found)
{
/* found pre-existing entry */
*isnew = false;
}
else
{
/* created new entry ... we hope */
if (entry == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
/*
* Zero any caller-requested space in the entry. (This zaps
* the "key data" dynahash.c copied into the new entry, but we
* don't care since we're about to overwrite it anyway.)
*/
MemSet(entry, 0, hashtable->entrysize);
/* Copy the first tuple into the table context */
MemoryContextSwitchTo(hashtable->tablecxt);
entry->firstTuple = heap_copytuple(tuple);
*isnew = true;
}
}
CurTupleHashTable = saveCurHT;
MemoryContextSwitchTo(oldContext);
return entry;
}
/*
* Compute the hash value for a tuple
*
* The passed-in key is a pointer to a HeapTuple pointer -- this is either
* the firstTuple field of a TupleHashEntry struct, or the key value passed
* to hash_search. We ignore the keysize.
*
* CurTupleHashTable must be set before calling this, since dynahash.c
* doesn't provide any API that would let us get at the hashtable otherwise.
*
* Also, the caller must select an appropriate memory context for running
* the hash functions. (dynahash.c doesn't change CurrentMemoryContext.)
*/
static uint32
TupleHashTableHash(const void *key, Size keysize)
{
HeapTuple tuple = *(const HeapTuple *) key;
TupleHashTable hashtable = CurTupleHashTable;
int numCols = hashtable->numCols;
AttrNumber *keyColIdx = hashtable->keyColIdx;
TupleDesc tupdesc = hashtable->tupdesc;
uint32 hashkey = 0;
int i;
for (i = 0; i < numCols; i++)
{
AttrNumber att = keyColIdx[i];
Datum attr;
bool isNull;
/* rotate hashkey left 1 bit at each step */
hashkey = (hashkey << 1) | ((hashkey & 0x80000000) ? 1 : 0);
attr = heap_getattr(tuple, att, tupdesc, &isNull);
if (!isNull) /* treat nulls as having hash key 0 */
{
uint32 hkey;
hkey = DatumGetUInt32(FunctionCall1(&hashtable->hashfunctions[i],
attr));
hashkey ^= hkey;
}
}
return hashkey;
}
/*
* See whether two tuples (presumably of the same hash value) match
*
* As above, the passed pointers are pointers to HeapTuple pointers.
*
* CurTupleHashTable must be set before calling this, since dynahash.c
* doesn't provide any API that would let us get at the hashtable otherwise.
*
* Also, the caller must select an appropriate memory context for running
* the compare functions. (dynahash.c doesn't change CurrentMemoryContext.)
*/
static int
TupleHashTableMatch(const void *key1, const void *key2, Size keysize)
{
HeapTuple tuple1 = *(const HeapTuple *) key1;
HeapTuple tuple2 = *(const HeapTuple *) key2;
TupleHashTable hashtable = CurTupleHashTable;
if (execTuplesMatch(tuple1,
tuple2,
hashtable->tupdesc,
hashtable->numCols,
hashtable->keyColIdx,
hashtable->eqfunctions,
hashtable->tempcxt))
return 0;
else
return 1;
}