Peter Eisentraut 2eb4a831e5 Change TRUE/FALSE to true/false
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources.  The upper case spellings are only used
in some files/modules.  So standardize on the standard spellings.

The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.

In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.

Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
2017-11-08 11:37:28 -05:00

1546 lines
41 KiB
C

/*-------------------------------------------------------------------------
*
* gistproc.c
* Support procedures for GiSTs over 2-D objects (boxes, polygons, circles,
* points).
*
* This gives R-tree behavior, with Guttman's poly-time split algorithm.
*
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/gist/gistproc.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <float.h>
#include <math.h>
#include "access/gist.h"
#include "access/stratnum.h"
#include "utils/builtins.h"
#include "utils/geo_decls.h"
static bool gist_box_leaf_consistent(BOX *key, BOX *query,
StrategyNumber strategy);
static bool rtree_internal_consistent(BOX *key, BOX *query,
StrategyNumber strategy);
/* Minimum accepted ratio of split */
#define LIMIT_RATIO 0.3
/* Convenience macros for NaN-aware comparisons */
#define FLOAT8_EQ(a,b) (float8_cmp_internal(a, b) == 0)
#define FLOAT8_LT(a,b) (float8_cmp_internal(a, b) < 0)
#define FLOAT8_LE(a,b) (float8_cmp_internal(a, b) <= 0)
#define FLOAT8_GT(a,b) (float8_cmp_internal(a, b) > 0)
#define FLOAT8_GE(a,b) (float8_cmp_internal(a, b) >= 0)
#define FLOAT8_MAX(a,b) (FLOAT8_GT(a, b) ? (a) : (b))
#define FLOAT8_MIN(a,b) (FLOAT8_LT(a, b) ? (a) : (b))
/**************************************************
* Box ops
**************************************************/
/*
* Calculates union of two boxes, a and b. The result is stored in *n.
*/
static void
rt_box_union(BOX *n, const BOX *a, const BOX *b)
{
n->high.x = FLOAT8_MAX(a->high.x, b->high.x);
n->high.y = FLOAT8_MAX(a->high.y, b->high.y);
n->low.x = FLOAT8_MIN(a->low.x, b->low.x);
n->low.y = FLOAT8_MIN(a->low.y, b->low.y);
}
/*
* Size of a BOX for penalty-calculation purposes.
* The result can be +Infinity, but not NaN.
*/
static double
size_box(const BOX *box)
{
/*
* Check for zero-width cases. Note that we define the size of a zero-
* by-infinity box as zero. It's important to special-case this somehow,
* as naively multiplying infinity by zero will produce NaN.
*
* The less-than cases should not happen, but if they do, say "zero".
*/
if (FLOAT8_LE(box->high.x, box->low.x) ||
FLOAT8_LE(box->high.y, box->low.y))
return 0.0;
/*
* We treat NaN as larger than +Infinity, so any distance involving a NaN
* and a non-NaN is infinite. Note the previous check eliminated the
* possibility that the low fields are NaNs.
*/
if (isnan(box->high.x) || isnan(box->high.y))
return get_float8_infinity();
return (box->high.x - box->low.x) * (box->high.y - box->low.y);
}
/*
* Return amount by which the union of the two boxes is larger than
* the original BOX's area. The result can be +Infinity, but not NaN.
*/
static double
box_penalty(const BOX *original, const BOX *new)
{
BOX unionbox;
rt_box_union(&unionbox, original, new);
return size_box(&unionbox) - size_box(original);
}
/*
* The GiST Consistent method for boxes
*
* Should return false if for all data items x below entry,
* the predicate x op query must be false, where op is the oper
* corresponding to strategy in the pg_amop table.
*/
Datum
gist_box_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
BOX *query = PG_GETARG_BOX_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
/* All cases served by this function are exact */
*recheck = false;
if (DatumGetBoxP(entry->key) == NULL || query == NULL)
PG_RETURN_BOOL(false);
/*
* if entry is not leaf, use rtree_internal_consistent, else use
* gist_box_leaf_consistent
*/
if (GIST_LEAF(entry))
PG_RETURN_BOOL(gist_box_leaf_consistent(DatumGetBoxP(entry->key),
query,
strategy));
else
PG_RETURN_BOOL(rtree_internal_consistent(DatumGetBoxP(entry->key),
query,
strategy));
}
/*
* Increase BOX b to include addon.
*/
static void
adjustBox(BOX *b, const BOX *addon)
{
if (FLOAT8_LT(b->high.x, addon->high.x))
b->high.x = addon->high.x;
if (FLOAT8_GT(b->low.x, addon->low.x))
b->low.x = addon->low.x;
if (FLOAT8_LT(b->high.y, addon->high.y))
b->high.y = addon->high.y;
if (FLOAT8_GT(b->low.y, addon->low.y))
b->low.y = addon->low.y;
}
/*
* The GiST Union method for boxes
*
* returns the minimal bounding box that encloses all the entries in entryvec
*/
Datum
gist_box_union(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
int *sizep = (int *) PG_GETARG_POINTER(1);
int numranges,
i;
BOX *cur,
*pageunion;
numranges = entryvec->n;
pageunion = (BOX *) palloc(sizeof(BOX));
cur = DatumGetBoxP(entryvec->vector[0].key);
memcpy((void *) pageunion, (void *) cur, sizeof(BOX));
for (i = 1; i < numranges; i++)
{
cur = DatumGetBoxP(entryvec->vector[i].key);
adjustBox(pageunion, cur);
}
*sizep = sizeof(BOX);
PG_RETURN_POINTER(pageunion);
}
/*
* We store boxes as boxes in GiST indexes, so we do not need
* compress, decompress, or fetch functions.
*/
/*
* The GiST Penalty method for boxes (also used for points)
*
* As in the R-tree paper, we use change in area as our penalty metric
*/
Datum
gist_box_penalty(PG_FUNCTION_ARGS)
{
GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
float *result = (float *) PG_GETARG_POINTER(2);
BOX *origbox = DatumGetBoxP(origentry->key);
BOX *newbox = DatumGetBoxP(newentry->key);
*result = (float) box_penalty(origbox, newbox);
PG_RETURN_POINTER(result);
}
/*
* Trivial split: half of entries will be placed on one page
* and another half - to another
*/
static void
fallbackSplit(GistEntryVector *entryvec, GIST_SPLITVEC *v)
{
OffsetNumber i,
maxoff;
BOX *unionL = NULL,
*unionR = NULL;
int nbytes;
maxoff = entryvec->n - 1;
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
v->spl_nleft = v->spl_nright = 0;
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
BOX *cur = DatumGetBoxP(entryvec->vector[i].key);
if (i <= (maxoff - FirstOffsetNumber + 1) / 2)
{
v->spl_left[v->spl_nleft] = i;
if (unionL == NULL)
{
unionL = (BOX *) palloc(sizeof(BOX));
*unionL = *cur;
}
else
adjustBox(unionL, cur);
v->spl_nleft++;
}
else
{
v->spl_right[v->spl_nright] = i;
if (unionR == NULL)
{
unionR = (BOX *) palloc(sizeof(BOX));
*unionR = *cur;
}
else
adjustBox(unionR, cur);
v->spl_nright++;
}
}
v->spl_ldatum = BoxPGetDatum(unionL);
v->spl_rdatum = BoxPGetDatum(unionR);
}
/*
* Represents information about an entry that can be placed to either group
* without affecting overlap over selected axis ("common entry").
*/
typedef struct
{
/* Index of entry in the initial array */
int index;
/* Delta between penalties of entry insertion into different groups */
double delta;
} CommonEntry;
/*
* Context for g_box_consider_split. Contains information about currently
* selected split and some general information.
*/
typedef struct
{
int entriesCount; /* total number of entries being split */
BOX boundingBox; /* minimum bounding box across all entries */
/* Information about currently selected split follows */
bool first; /* true if no split was selected yet */
double leftUpper; /* upper bound of left interval */
double rightLower; /* lower bound of right interval */
float4 ratio;
float4 overlap;
int dim; /* axis of this split */
double range; /* width of general MBR projection to the
* selected axis */
} ConsiderSplitContext;
/*
* Interval represents projection of box to axis.
*/
typedef struct
{
double lower,
upper;
} SplitInterval;
/*
* Interval comparison function by lower bound of the interval;
*/
static int
interval_cmp_lower(const void *i1, const void *i2)
{
double lower1 = ((const SplitInterval *) i1)->lower,
lower2 = ((const SplitInterval *) i2)->lower;
return float8_cmp_internal(lower1, lower2);
}
/*
* Interval comparison function by upper bound of the interval;
*/
static int
interval_cmp_upper(const void *i1, const void *i2)
{
double upper1 = ((const SplitInterval *) i1)->upper,
upper2 = ((const SplitInterval *) i2)->upper;
return float8_cmp_internal(upper1, upper2);
}
/*
* Replace negative (or NaN) value with zero.
*/
static inline float
non_negative(float val)
{
if (val >= 0.0f)
return val;
else
return 0.0f;
}
/*
* Consider replacement of currently selected split with the better one.
*/
static inline void
g_box_consider_split(ConsiderSplitContext *context, int dimNum,
double rightLower, int minLeftCount,
double leftUpper, int maxLeftCount)
{
int leftCount,
rightCount;
float4 ratio,
overlap;
double range;
/*
* Calculate entries distribution ratio assuming most uniform distribution
* of common entries.
*/
if (minLeftCount >= (context->entriesCount + 1) / 2)
{
leftCount = minLeftCount;
}
else
{
if (maxLeftCount <= context->entriesCount / 2)
leftCount = maxLeftCount;
else
leftCount = context->entriesCount / 2;
}
rightCount = context->entriesCount - leftCount;
/*
* Ratio of split - quotient between size of lesser group and total
* entries count.
*/
ratio = ((float4) Min(leftCount, rightCount)) /
((float4) context->entriesCount);
if (ratio > LIMIT_RATIO)
{
bool selectthis = false;
/*
* The ratio is acceptable, so compare current split with previously
* selected one. Between splits of one dimension we search for minimal
* overlap (allowing negative values) and minimal ration (between same
* overlaps. We switch dimension if find less overlap (non-negative)
* or less range with same overlap.
*/
if (dimNum == 0)
range = context->boundingBox.high.x - context->boundingBox.low.x;
else
range = context->boundingBox.high.y - context->boundingBox.low.y;
overlap = (leftUpper - rightLower) / range;
/* If there is no previous selection, select this */
if (context->first)
selectthis = true;
else if (context->dim == dimNum)
{
/*
* Within the same dimension, choose the new split if it has a
* smaller overlap, or same overlap but better ratio.
*/
if (overlap < context->overlap ||
(overlap == context->overlap && ratio > context->ratio))
selectthis = true;
}
else
{
/*
* Across dimensions, choose the new split if it has a smaller
* *non-negative* overlap, or same *non-negative* overlap but
* bigger range. This condition differs from the one described in
* the article. On the datasets where leaf MBRs don't overlap
* themselves, non-overlapping splits (i.e. splits which have zero
* *non-negative* overlap) are frequently possible. In this case
* splits tends to be along one dimension, because most distant
* non-overlapping splits (i.e. having lowest negative overlap)
* appears to be in the same dimension as in the previous split.
* Therefore MBRs appear to be very prolonged along another
* dimension, which leads to bad search performance. Using range
* as the second split criteria makes MBRs more quadratic. Using
* *non-negative* overlap instead of overlap as the first split
* criteria gives to range criteria a chance to matter, because
* non-overlapping splits are equivalent in this criteria.
*/
if (non_negative(overlap) < non_negative(context->overlap) ||
(range > context->range &&
non_negative(overlap) <= non_negative(context->overlap)))
selectthis = true;
}
if (selectthis)
{
/* save information about selected split */
context->first = false;
context->ratio = ratio;
context->range = range;
context->overlap = overlap;
context->rightLower = rightLower;
context->leftUpper = leftUpper;
context->dim = dimNum;
}
}
}
/*
* Compare common entries by their deltas.
* (We assume the deltas can't be NaN.)
*/
static int
common_entry_cmp(const void *i1, const void *i2)
{
double delta1 = ((const CommonEntry *) i1)->delta,
delta2 = ((const CommonEntry *) i2)->delta;
if (delta1 < delta2)
return -1;
else if (delta1 > delta2)
return 1;
else
return 0;
}
/*
* --------------------------------------------------------------------------
* Double sorting split algorithm. This is used for both boxes and points.
*
* The algorithm finds split of boxes by considering splits along each axis.
* Each entry is first projected as an interval on the X-axis, and different
* ways to split the intervals into two groups are considered, trying to
* minimize the overlap of the groups. Then the same is repeated for the
* Y-axis, and the overall best split is chosen. The quality of a split is
* determined by overlap along that axis and some other criteria (see
* g_box_consider_split).
*
* After that, all the entries are divided into three groups:
*
* 1) Entries which should be placed to the left group
* 2) Entries which should be placed to the right group
* 3) "Common entries" which can be placed to any of groups without affecting
* of overlap along selected axis.
*
* The common entries are distributed by minimizing penalty.
*
* For details see:
* "A new double sorting-based node splitting algorithm for R-tree", A. Korotkov
* http://syrcose.ispras.ru/2011/files/SYRCoSE2011_Proceedings.pdf#page=36
* --------------------------------------------------------------------------
*/
Datum
gist_box_picksplit(PG_FUNCTION_ARGS)
{
GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
OffsetNumber i,
maxoff;
ConsiderSplitContext context;
BOX *box,
*leftBox,
*rightBox;
int dim,
commonEntriesCount;
SplitInterval *intervalsLower,
*intervalsUpper;
CommonEntry *commonEntries;
int nentries;
memset(&context, 0, sizeof(ConsiderSplitContext));
maxoff = entryvec->n - 1;
nentries = context.entriesCount = maxoff - FirstOffsetNumber + 1;
/* Allocate arrays for intervals along axes */
intervalsLower = (SplitInterval *) palloc(nentries * sizeof(SplitInterval));
intervalsUpper = (SplitInterval *) palloc(nentries * sizeof(SplitInterval));
/*
* Calculate the overall minimum bounding box over all the entries.
*/
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
box = DatumGetBoxP(entryvec->vector[i].key);
if (i == FirstOffsetNumber)
context.boundingBox = *box;
else
adjustBox(&context.boundingBox, box);
}
/*
* Iterate over axes for optimal split searching.
*/
context.first = true; /* nothing selected yet */
for (dim = 0; dim < 2; dim++)
{
double leftUpper,
rightLower;
int i1,
i2;
/* Project each entry as an interval on the selected axis. */
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
box = DatumGetBoxP(entryvec->vector[i].key);
if (dim == 0)
{
intervalsLower[i - FirstOffsetNumber].lower = box->low.x;
intervalsLower[i - FirstOffsetNumber].upper = box->high.x;
}
else
{
intervalsLower[i - FirstOffsetNumber].lower = box->low.y;
intervalsLower[i - FirstOffsetNumber].upper = box->high.y;
}
}
/*
* Make two arrays of intervals: one sorted by lower bound and another
* sorted by upper bound.
*/
memcpy(intervalsUpper, intervalsLower,
sizeof(SplitInterval) * nentries);
qsort(intervalsLower, nentries, sizeof(SplitInterval),
interval_cmp_lower);
qsort(intervalsUpper, nentries, sizeof(SplitInterval),
interval_cmp_upper);
/*----
* The goal is to form a left and right interval, so that every entry
* interval is contained by either left or right interval (or both).
*
* For example, with the intervals (0,1), (1,3), (2,3), (2,4):
*
* 0 1 2 3 4
* +-+
* +---+
* +-+
* +---+
*
* The left and right intervals are of the form (0,a) and (b,4).
* We first consider splits where b is the lower bound of an entry.
* We iterate through all entries, and for each b, calculate the
* smallest possible a. Then we consider splits where a is the
* upper bound of an entry, and for each a, calculate the greatest
* possible b.
*
* In the above example, the first loop would consider splits:
* b=0: (0,1)-(0,4)
* b=1: (0,1)-(1,4)
* b=2: (0,3)-(2,4)
*
* And the second loop:
* a=1: (0,1)-(1,4)
* a=3: (0,3)-(2,4)
* a=4: (0,4)-(2,4)
*/
/*
* Iterate over lower bound of right group, finding smallest possible
* upper bound of left group.
*/
i1 = 0;
i2 = 0;
rightLower = intervalsLower[i1].lower;
leftUpper = intervalsUpper[i2].lower;
while (true)
{
/*
* Find next lower bound of right group.
*/
while (i1 < nentries &&
FLOAT8_EQ(rightLower, intervalsLower[i1].lower))
{
if (FLOAT8_LT(leftUpper, intervalsLower[i1].upper))
leftUpper = intervalsLower[i1].upper;
i1++;
}
if (i1 >= nentries)
break;
rightLower = intervalsLower[i1].lower;
/*
* Find count of intervals which anyway should be placed to the
* left group.
*/
while (i2 < nentries &&
FLOAT8_LE(intervalsUpper[i2].upper, leftUpper))
i2++;
/*
* Consider found split.
*/
g_box_consider_split(&context, dim, rightLower, i1, leftUpper, i2);
}
/*
* Iterate over upper bound of left group finding greatest possible
* lower bound of right group.
*/
i1 = nentries - 1;
i2 = nentries - 1;
rightLower = intervalsLower[i1].upper;
leftUpper = intervalsUpper[i2].upper;
while (true)
{
/*
* Find next upper bound of left group.
*/
while (i2 >= 0 && FLOAT8_EQ(leftUpper, intervalsUpper[i2].upper))
{
if (FLOAT8_GT(rightLower, intervalsUpper[i2].lower))
rightLower = intervalsUpper[i2].lower;
i2--;
}
if (i2 < 0)
break;
leftUpper = intervalsUpper[i2].upper;
/*
* Find count of intervals which anyway should be placed to the
* right group.
*/
while (i1 >= 0 && FLOAT8_GE(intervalsLower[i1].lower, rightLower))
i1--;
/*
* Consider found split.
*/
g_box_consider_split(&context, dim,
rightLower, i1 + 1, leftUpper, i2 + 1);
}
}
/*
* If we failed to find any acceptable splits, use trivial split.
*/
if (context.first)
{
fallbackSplit(entryvec, v);
PG_RETURN_POINTER(v);
}
/*
* Ok, we have now selected the split across one axis.
*
* While considering the splits, we already determined that there will be
* enough entries in both groups to reach the desired ratio, but we did
* not memorize which entries go to which group. So determine that now.
*/
/* Allocate vectors for results */
v->spl_left = (OffsetNumber *) palloc(nentries * sizeof(OffsetNumber));
v->spl_right = (OffsetNumber *) palloc(nentries * sizeof(OffsetNumber));
v->spl_nleft = 0;
v->spl_nright = 0;
/* Allocate bounding boxes of left and right groups */
leftBox = palloc0(sizeof(BOX));
rightBox = palloc0(sizeof(BOX));
/*
* Allocate an array for "common entries" - entries which can be placed to
* either group without affecting overlap along selected axis.
*/
commonEntriesCount = 0;
commonEntries = (CommonEntry *) palloc(nentries * sizeof(CommonEntry));
/* Helper macros to place an entry in the left or right group */
#define PLACE_LEFT(box, off) \
do { \
if (v->spl_nleft > 0) \
adjustBox(leftBox, box); \
else \
*leftBox = *(box); \
v->spl_left[v->spl_nleft++] = off; \
} while(0)
#define PLACE_RIGHT(box, off) \
do { \
if (v->spl_nright > 0) \
adjustBox(rightBox, box); \
else \
*rightBox = *(box); \
v->spl_right[v->spl_nright++] = off; \
} while(0)
/*
* Distribute entries which can be distributed unambiguously, and collect
* common entries.
*/
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
double lower,
upper;
/*
* Get upper and lower bounds along selected axis.
*/
box = DatumGetBoxP(entryvec->vector[i].key);
if (context.dim == 0)
{
lower = box->low.x;
upper = box->high.x;
}
else
{
lower = box->low.y;
upper = box->high.y;
}
if (FLOAT8_LE(upper, context.leftUpper))
{
/* Fits to the left group */
if (FLOAT8_GE(lower, context.rightLower))
{
/* Fits also to the right group, so "common entry" */
commonEntries[commonEntriesCount++].index = i;
}
else
{
/* Doesn't fit to the right group, so join to the left group */
PLACE_LEFT(box, i);
}
}
else
{
/*
* Each entry should fit on either left or right group. Since this
* entry didn't fit on the left group, it better fit in the right
* group.
*/
Assert(FLOAT8_GE(lower, context.rightLower));
/* Doesn't fit to the left group, so join to the right group */
PLACE_RIGHT(box, i);
}
}
/*
* Distribute "common entries", if any.
*/
if (commonEntriesCount > 0)
{
/*
* Calculate minimum number of entries that must be placed in both
* groups, to reach LIMIT_RATIO.
*/
int m = ceil(LIMIT_RATIO * (double) nentries);
/*
* Calculate delta between penalties of join "common entries" to
* different groups.
*/
for (i = 0; i < commonEntriesCount; i++)
{
box = DatumGetBoxP(entryvec->vector[commonEntries[i].index].key);
commonEntries[i].delta = Abs(box_penalty(leftBox, box) -
box_penalty(rightBox, box));
}
/*
* Sort "common entries" by calculated deltas in order to distribute
* the most ambiguous entries first.
*/
qsort(commonEntries, commonEntriesCount, sizeof(CommonEntry), common_entry_cmp);
/*
* Distribute "common entries" between groups.
*/
for (i = 0; i < commonEntriesCount; i++)
{
box = DatumGetBoxP(entryvec->vector[commonEntries[i].index].key);
/*
* Check if we have to place this entry in either group to achieve
* LIMIT_RATIO.
*/
if (v->spl_nleft + (commonEntriesCount - i) <= m)
PLACE_LEFT(box, commonEntries[i].index);
else if (v->spl_nright + (commonEntriesCount - i) <= m)
PLACE_RIGHT(box, commonEntries[i].index);
else
{
/* Otherwise select the group by minimal penalty */
if (box_penalty(leftBox, box) < box_penalty(rightBox, box))
PLACE_LEFT(box, commonEntries[i].index);
else
PLACE_RIGHT(box, commonEntries[i].index);
}
}
}
v->spl_ldatum = PointerGetDatum(leftBox);
v->spl_rdatum = PointerGetDatum(rightBox);
PG_RETURN_POINTER(v);
}
/*
* Equality method
*
* This is used for boxes, points, circles, and polygons, all of which store
* boxes as GiST index entries.
*
* Returns true only when boxes are exactly the same. We can't use fuzzy
* comparisons here without breaking index consistency; therefore, this isn't
* equivalent to box_same().
*/
Datum
gist_box_same(PG_FUNCTION_ARGS)
{
BOX *b1 = PG_GETARG_BOX_P(0);
BOX *b2 = PG_GETARG_BOX_P(1);
bool *result = (bool *) PG_GETARG_POINTER(2);
if (b1 && b2)
*result = (FLOAT8_EQ(b1->low.x, b2->low.x) &&
FLOAT8_EQ(b1->low.y, b2->low.y) &&
FLOAT8_EQ(b1->high.x, b2->high.x) &&
FLOAT8_EQ(b1->high.y, b2->high.y));
else
*result = (b1 == NULL && b2 == NULL);
PG_RETURN_POINTER(result);
}
/*
* Leaf-level consistency for boxes: just apply the query operator
*/
static bool
gist_box_leaf_consistent(BOX *key, BOX *query, StrategyNumber strategy)
{
bool retval;
switch (strategy)
{
case RTLeftStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_left,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverLeftStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overleft,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverlapStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overlap,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverRightStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overright,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTRightStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_right,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTSameStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_same,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_contain,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_contained,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverBelowStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overbelow,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTBelowStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_below,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTAboveStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_above,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverAboveStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overabove,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
retval = false; /* keep compiler quiet */
break;
}
return retval;
}
/*****************************************
* Common rtree functions (for boxes, polygons, and circles)
*****************************************/
/*
* Internal-page consistency for all these types
*
* We can use the same function since all types use bounding boxes as the
* internal-page representation.
*/
static bool
rtree_internal_consistent(BOX *key, BOX *query, StrategyNumber strategy)
{
bool retval;
switch (strategy)
{
case RTLeftStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_overright,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverLeftStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_right,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverlapStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overlap,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverRightStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_left,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTRightStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_overleft,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_contain,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
retval = DatumGetBool(DirectFunctionCall2(box_overlap,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverBelowStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_above,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTBelowStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_overabove,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTAboveStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_overbelow,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
case RTOverAboveStrategyNumber:
retval = !DatumGetBool(DirectFunctionCall2(box_below,
PointerGetDatum(key),
PointerGetDatum(query)));
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
retval = false; /* keep compiler quiet */
break;
}
return retval;
}
/**************************************************
* Polygon ops
**************************************************/
/*
* GiST compress for polygons: represent a polygon by its bounding box
*/
Datum
gist_poly_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
if (entry->leafkey)
{
POLYGON *in = DatumGetPolygonP(entry->key);
BOX *r;
r = (BOX *) palloc(sizeof(BOX));
memcpy((void *) r, (void *) &(in->boundbox), sizeof(BOX));
retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page,
entry->offset, false);
}
else
retval = entry;
PG_RETURN_POINTER(retval);
}
/*
* The GiST Consistent method for polygons
*/
Datum
gist_poly_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
POLYGON *query = PG_GETARG_POLYGON_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
bool result;
/* All cases served by this function are inexact */
*recheck = true;
if (DatumGetBoxP(entry->key) == NULL || query == NULL)
PG_RETURN_BOOL(false);
/*
* Since the operators require recheck anyway, we can just use
* rtree_internal_consistent even at leaf nodes. (This works in part
* because the index entries are bounding boxes not polygons.)
*/
result = rtree_internal_consistent(DatumGetBoxP(entry->key),
&(query->boundbox), strategy);
/* Avoid memory leak if supplied poly is toasted */
PG_FREE_IF_COPY(query, 1);
PG_RETURN_BOOL(result);
}
/**************************************************
* Circle ops
**************************************************/
/*
* GiST compress for circles: represent a circle by its bounding box
*/
Datum
gist_circle_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
GISTENTRY *retval;
if (entry->leafkey)
{
CIRCLE *in = DatumGetCircleP(entry->key);
BOX *r;
r = (BOX *) palloc(sizeof(BOX));
r->high.x = in->center.x + in->radius;
r->low.x = in->center.x - in->radius;
r->high.y = in->center.y + in->radius;
r->low.y = in->center.y - in->radius;
retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page,
entry->offset, false);
}
else
retval = entry;
PG_RETURN_POINTER(retval);
}
/*
* The GiST Consistent method for circles
*/
Datum
gist_circle_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
CIRCLE *query = PG_GETARG_CIRCLE_P(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
BOX bbox;
bool result;
/* All cases served by this function are inexact */
*recheck = true;
if (DatumGetBoxP(entry->key) == NULL || query == NULL)
PG_RETURN_BOOL(false);
/*
* Since the operators require recheck anyway, we can just use
* rtree_internal_consistent even at leaf nodes. (This works in part
* because the index entries are bounding boxes not circles.)
*/
bbox.high.x = query->center.x + query->radius;
bbox.low.x = query->center.x - query->radius;
bbox.high.y = query->center.y + query->radius;
bbox.low.y = query->center.y - query->radius;
result = rtree_internal_consistent(DatumGetBoxP(entry->key),
&bbox, strategy);
PG_RETURN_BOOL(result);
}
/**************************************************
* Point ops
**************************************************/
Datum
gist_point_compress(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
if (entry->leafkey) /* Point, actually */
{
BOX *box = palloc(sizeof(BOX));
Point *point = DatumGetPointP(entry->key);
GISTENTRY *retval = palloc(sizeof(GISTENTRY));
box->high = box->low = *point;
gistentryinit(*retval, BoxPGetDatum(box),
entry->rel, entry->page, entry->offset, false);
PG_RETURN_POINTER(retval);
}
PG_RETURN_POINTER(entry);
}
/*
* GiST Fetch method for point
*
* Get point coordinates from its bounding box coordinates and form new
* gistentry.
*/
Datum
gist_point_fetch(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
BOX *in = DatumGetBoxP(entry->key);
Point *r;
GISTENTRY *retval;
retval = palloc(sizeof(GISTENTRY));
r = (Point *) palloc(sizeof(Point));
r->x = in->high.x;
r->y = in->high.y;
gistentryinit(*retval, PointerGetDatum(r),
entry->rel, entry->page,
entry->offset, false);
PG_RETURN_POINTER(retval);
}
#define point_point_distance(p1,p2) \
DatumGetFloat8(DirectFunctionCall2(point_distance, \
PointPGetDatum(p1), PointPGetDatum(p2)))
static double
computeDistance(bool isLeaf, BOX *box, Point *point)
{
double result = 0.0;
if (isLeaf)
{
/* simple point to point distance */
result = point_point_distance(point, &box->low);
}
else if (point->x <= box->high.x && point->x >= box->low.x &&
point->y <= box->high.y && point->y >= box->low.y)
{
/* point inside the box */
result = 0.0;
}
else if (point->x <= box->high.x && point->x >= box->low.x)
{
/* point is over or below box */
Assert(box->low.y <= box->high.y);
if (point->y > box->high.y)
result = point->y - box->high.y;
else if (point->y < box->low.y)
result = box->low.y - point->y;
else
elog(ERROR, "inconsistent point values");
}
else if (point->y <= box->high.y && point->y >= box->low.y)
{
/* point is to left or right of box */
Assert(box->low.x <= box->high.x);
if (point->x > box->high.x)
result = point->x - box->high.x;
else if (point->x < box->low.x)
result = box->low.x - point->x;
else
elog(ERROR, "inconsistent point values");
}
else
{
/* closest point will be a vertex */
Point p;
double subresult;
result = point_point_distance(point, &box->low);
subresult = point_point_distance(point, &box->high);
if (result > subresult)
result = subresult;
p.x = box->low.x;
p.y = box->high.y;
subresult = point_point_distance(point, &p);
if (result > subresult)
result = subresult;
p.x = box->high.x;
p.y = box->low.y;
subresult = point_point_distance(point, &p);
if (result > subresult)
result = subresult;
}
return result;
}
static bool
gist_point_consistent_internal(StrategyNumber strategy,
bool isLeaf, BOX *key, Point *query)
{
bool result = false;
switch (strategy)
{
case RTLeftStrategyNumber:
result = FPlt(key->low.x, query->x);
break;
case RTRightStrategyNumber:
result = FPgt(key->high.x, query->x);
break;
case RTAboveStrategyNumber:
result = FPgt(key->high.y, query->y);
break;
case RTBelowStrategyNumber:
result = FPlt(key->low.y, query->y);
break;
case RTSameStrategyNumber:
if (isLeaf)
{
/* key.high must equal key.low, so we can disregard it */
result = (FPeq(key->low.x, query->x) &&
FPeq(key->low.y, query->y));
}
else
{
result = (FPle(query->x, key->high.x) &&
FPge(query->x, key->low.x) &&
FPle(query->y, key->high.y) &&
FPge(query->y, key->low.y));
}
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
result = false; /* keep compiler quiet */
break;
}
return result;
}
#define GeoStrategyNumberOffset 20
#define PointStrategyNumberGroup 0
#define BoxStrategyNumberGroup 1
#define PolygonStrategyNumberGroup 2
#define CircleStrategyNumberGroup 3
Datum
gist_point_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
bool *recheck = (bool *) PG_GETARG_POINTER(4);
bool result;
StrategyNumber strategyGroup = strategy / GeoStrategyNumberOffset;
switch (strategyGroup)
{
case PointStrategyNumberGroup:
result = gist_point_consistent_internal(strategy % GeoStrategyNumberOffset,
GIST_LEAF(entry),
DatumGetBoxP(entry->key),
PG_GETARG_POINT_P(1));
*recheck = false;
break;
case BoxStrategyNumberGroup:
{
/*
* The only operator in this group is point <@ box (on_pb), so
* we needn't examine strategy again.
*
* For historical reasons, on_pb uses exact rather than fuzzy
* comparisons. We could use box_overlap when at an internal
* page, but that would lead to possibly visiting child pages
* uselessly, because box_overlap uses fuzzy comparisons.
* Instead we write a non-fuzzy overlap test. The same code
* will also serve for leaf-page tests, since leaf keys have
* high == low.
*/
BOX *query,
*key;
query = PG_GETARG_BOX_P(1);
key = DatumGetBoxP(entry->key);
result = (key->high.x >= query->low.x &&
key->low.x <= query->high.x &&
key->high.y >= query->low.y &&
key->low.y <= query->high.y);
*recheck = false;
}
break;
case PolygonStrategyNumberGroup:
{
POLYGON *query = PG_GETARG_POLYGON_P(1);
result = DatumGetBool(DirectFunctionCall5(
gist_poly_consistent,
PointerGetDatum(entry),
PolygonPGetDatum(query),
Int16GetDatum(RTOverlapStrategyNumber),
0, PointerGetDatum(recheck)));
if (GIST_LEAF(entry) && result)
{
/*
* We are on leaf page and quick check shows overlapping
* of polygon's bounding box and point
*/
BOX *box = DatumGetBoxP(entry->key);
Assert(box->high.x == box->low.x
&& box->high.y == box->low.y);
result = DatumGetBool(DirectFunctionCall2(
poly_contain_pt,
PolygonPGetDatum(query),
PointPGetDatum(&box->high)));
*recheck = false;
}
}
break;
case CircleStrategyNumberGroup:
{
CIRCLE *query = PG_GETARG_CIRCLE_P(1);
result = DatumGetBool(DirectFunctionCall5(
gist_circle_consistent,
PointerGetDatum(entry),
CirclePGetDatum(query),
Int16GetDatum(RTOverlapStrategyNumber),
0, PointerGetDatum(recheck)));
if (GIST_LEAF(entry) && result)
{
/*
* We are on leaf page and quick check shows overlapping
* of polygon's bounding box and point
*/
BOX *box = DatumGetBoxP(entry->key);
Assert(box->high.x == box->low.x
&& box->high.y == box->low.y);
result = DatumGetBool(DirectFunctionCall2(
circle_contain_pt,
CirclePGetDatum(query),
PointPGetDatum(&box->high)));
*recheck = false;
}
}
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
result = false; /* keep compiler quiet */
break;
}
PG_RETURN_BOOL(result);
}
Datum
gist_point_distance(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
double distance;
StrategyNumber strategyGroup = strategy / GeoStrategyNumberOffset;
switch (strategyGroup)
{
case PointStrategyNumberGroup:
distance = computeDistance(GIST_LEAF(entry),
DatumGetBoxP(entry->key),
PG_GETARG_POINT_P(1));
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
distance = 0.0; /* keep compiler quiet */
break;
}
PG_RETURN_FLOAT8(distance);
}
/*
* The inexact GiST distance method for geometric types that store bounding
* boxes.
*
* Compute lossy distance from point to index entries. The result is inexact
* because index entries are bounding boxes, not the exact shapes of the
* indexed geometric types. We use distance from point to MBR of index entry.
* This is a lower bound estimate of distance from point to indexed geometric
* type.
*/
static double
gist_bbox_distance(GISTENTRY *entry, Datum query,
StrategyNumber strategy, bool *recheck)
{
double distance;
StrategyNumber strategyGroup = strategy / GeoStrategyNumberOffset;
/* Bounding box distance is always inexact. */
*recheck = true;
switch (strategyGroup)
{
case PointStrategyNumberGroup:
distance = computeDistance(false,
DatumGetBoxP(entry->key),
DatumGetPointP(query));
break;
default:
elog(ERROR, "unrecognized strategy number: %d", strategy);
distance = 0.0; /* keep compiler quiet */
}
return distance;
}
Datum
gist_circle_distance(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
Datum query = PG_GETARG_DATUM(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
double distance;
distance = gist_bbox_distance(entry, query, strategy, recheck);
PG_RETURN_FLOAT8(distance);
}
Datum
gist_poly_distance(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
Datum query = PG_GETARG_DATUM(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
double distance;
distance = gist_bbox_distance(entry, query, strategy, recheck);
PG_RETURN_FLOAT8(distance);
}