mirror of
https://github.com/postgres/postgres.git
synced 2025-12-09 00:03:13 -05:00
164 lines
3.6 KiB
C
164 lines
3.6 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* bipartite_match.c
|
|
* Hopcroft-Karp maximum cardinality algorithm for bipartite graphs
|
|
*
|
|
* This implementation is based on pseudocode found at:
|
|
*
|
|
* http://en.wikipedia.org/w/index.php?title=Hopcroft%E2%80%93Karp_algorithm&oldid=593898016
|
|
*
|
|
* Copyright (c) 2015, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/lib/bipartite_match.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
|
|
#include "lib/bipartite_match.h"
|
|
#include "miscadmin.h"
|
|
#include "utils/builtins.h"
|
|
|
|
|
|
static bool hk_breadth_search(BipartiteMatchState *state);
|
|
static bool hk_depth_search(BipartiteMatchState *state, int u, int depth);
|
|
|
|
/*
|
|
* Given the size of U and V, where each is indexed 1..size, and an adjacency
|
|
* list, perform the matching and return the resulting state.
|
|
*/
|
|
BipartiteMatchState *
|
|
BipartiteMatch(int u_size, int v_size, short **adjacency)
|
|
{
|
|
BipartiteMatchState *state = palloc(sizeof(BipartiteMatchState));
|
|
|
|
Assert(u_size < SHRT_MAX);
|
|
Assert(v_size < SHRT_MAX);
|
|
|
|
state->u_size = u_size;
|
|
state->v_size = v_size;
|
|
state->matching = 0;
|
|
state->adjacency = adjacency;
|
|
state->pair_uv = palloc0((u_size + 1) * sizeof(short));
|
|
state->pair_vu = palloc0((v_size + 1) * sizeof(short));
|
|
state->distance = palloc((u_size + 1) * sizeof(float));
|
|
state->queue = palloc((u_size + 2) * sizeof(short));
|
|
|
|
while (hk_breadth_search(state))
|
|
{
|
|
int u;
|
|
|
|
for (u = 1; u <= u_size; ++u)
|
|
if (state->pair_uv[u] == 0)
|
|
if (hk_depth_search(state, u, 1))
|
|
state->matching++;
|
|
|
|
CHECK_FOR_INTERRUPTS(); /* just in case */
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
/*
|
|
* Free a state returned by BipartiteMatch, except for the original adjacency
|
|
* list, which is owned by the caller. This only frees memory, so it's optional.
|
|
*/
|
|
void
|
|
BipartiteMatchFree(BipartiteMatchState *state)
|
|
{
|
|
/* adjacency matrix is treated as owned by the caller */
|
|
pfree(state->pair_uv);
|
|
pfree(state->pair_vu);
|
|
pfree(state->distance);
|
|
pfree(state->queue);
|
|
pfree(state);
|
|
}
|
|
|
|
static bool
|
|
hk_breadth_search(BipartiteMatchState *state)
|
|
{
|
|
int usize = state->u_size;
|
|
short *queue = state->queue;
|
|
float *distance = state->distance;
|
|
int qhead = 0; /* we never enqueue any node more than once */
|
|
int qtail = 0; /* so don't have to worry about wrapping */
|
|
int u;
|
|
|
|
distance[0] = get_float4_infinity();
|
|
|
|
for (u = 1; u <= usize; ++u)
|
|
{
|
|
if (state->pair_uv[u] == 0)
|
|
{
|
|
distance[u] = 0;
|
|
queue[qhead++] = u;
|
|
}
|
|
else
|
|
distance[u] = get_float4_infinity();
|
|
}
|
|
|
|
while (qtail < qhead)
|
|
{
|
|
u = queue[qtail++];
|
|
|
|
if (distance[u] < distance[0])
|
|
{
|
|
short *u_adj = state->adjacency[u];
|
|
int i = u_adj ? u_adj[0] : 0;
|
|
|
|
for (; i > 0; --i)
|
|
{
|
|
int u_next = state->pair_vu[u_adj[i]];
|
|
|
|
if (isinf(distance[u_next]))
|
|
{
|
|
distance[u_next] = 1 + distance[u];
|
|
queue[qhead++] = u_next;
|
|
Assert(qhead <= usize+2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return !isinf(distance[0]);
|
|
}
|
|
|
|
static bool
|
|
hk_depth_search(BipartiteMatchState *state, int u, int depth)
|
|
{
|
|
float *distance = state->distance;
|
|
short *pair_uv = state->pair_uv;
|
|
short *pair_vu = state->pair_vu;
|
|
short *u_adj = state->adjacency[u];
|
|
int i = u_adj ? u_adj[0] : 0;
|
|
|
|
if (u == 0)
|
|
return true;
|
|
|
|
if ((depth % 8) == 0)
|
|
check_stack_depth();
|
|
|
|
for (; i > 0; --i)
|
|
{
|
|
int v = u_adj[i];
|
|
|
|
if (distance[pair_vu[v]] == distance[u] + 1)
|
|
{
|
|
if (hk_depth_search(state, pair_vu[v], depth+1))
|
|
{
|
|
pair_vu[v] = u;
|
|
pair_uv[u] = v;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
distance[u] = get_float4_infinity();
|
|
return false;
|
|
}
|