Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00

1464 lines
34 KiB
C

/*-------------------------------------------------------------------------
*
* list.c
* implementation for PostgreSQL generic list package
*
* See comments in pg_list.h.
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/nodes/list.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "nodes/pg_list.h"
#include "utils/memutils.h"
/*
* The previous List implementation, since it used a separate palloc chunk
* for each cons cell, had the property that adding or deleting list cells
* did not move the storage of other existing cells in the list. Quite a
* bit of existing code depended on that, by retaining ListCell pointers
* across such operations on a list. There is no such guarantee in this
* implementation, so instead we have debugging support that is meant to
* help flush out now-broken assumptions. Defining DEBUG_LIST_MEMORY_USAGE
* while building this file causes the List operations to forcibly move
* all cells in a list whenever a cell is added or deleted. In combination
* with MEMORY_CONTEXT_CHECKING and/or Valgrind, this can usually expose
* broken code. It's a bit expensive though, as there's many more palloc
* cycles and a lot more data-copying than in a default build.
*
* By default, we enable this when building for Valgrind.
*/
#ifdef USE_VALGRIND
#define DEBUG_LIST_MEMORY_USAGE
#endif
/* Overhead for the fixed part of a List header, measured in ListCells */
#define LIST_HEADER_OVERHEAD \
((int) ((offsetof(List, initial_elements) - 1) / sizeof(ListCell) + 1))
/*
* Macros to simplify writing assertions about the type of a list; a
* NIL list is considered to be an empty list of any type.
*/
#define IsPointerList(l) ((l) == NIL || IsA((l), List))
#define IsIntegerList(l) ((l) == NIL || IsA((l), IntList))
#define IsOidList(l) ((l) == NIL || IsA((l), OidList))
#ifdef USE_ASSERT_CHECKING
/*
* Check that the specified List is valid (so far as we can tell).
*/
static void
check_list_invariants(const List *list)
{
if (list == NIL)
return;
Assert(list->length > 0);
Assert(list->length <= list->max_length);
Assert(list->elements != NULL);
Assert(list->type == T_List ||
list->type == T_IntList ||
list->type == T_OidList);
}
#else
#define check_list_invariants(l) ((void) 0)
#endif /* USE_ASSERT_CHECKING */
/*
* Return a freshly allocated List with room for at least min_size cells.
*
* Since empty non-NIL lists are invalid, new_list() sets the initial length
* to min_size, effectively marking that number of cells as valid; the caller
* is responsible for filling in their data.
*/
static List *
new_list(NodeTag type, int min_size)
{
List *newlist;
int max_size;
Assert(min_size > 0);
/*
* We allocate all the requested cells, and possibly some more, as part of
* the same palloc request as the List header. This is a big win for the
* typical case of short fixed-length lists. It can lose if we allocate a
* moderately long list and then it gets extended; we'll be wasting more
* initial_elements[] space than if we'd made the header small. However,
* rounding up the request as we do in the normal code path provides some
* defense against small extensions.
*/
#ifndef DEBUG_LIST_MEMORY_USAGE
/*
* Normally, we set up a list with some extra cells, to allow it to grow
* without a repalloc. Prefer cell counts chosen to make the total
* allocation a power-of-2, since palloc would round it up to that anyway.
* (That stops being true for very large allocations, but very long lists
* are infrequent, so it doesn't seem worth special logic for such cases.)
*
* The minimum allocation is 8 ListCell units, providing either 4 or 5
* available ListCells depending on the machine's word width. Counting
* palloc's overhead, this uses the same amount of space as a one-cell
* list did in the old implementation, and less space for any longer list.
*
* We needn't worry about integer overflow; no caller passes min_size
* that's more than twice the size of an existing list, so the size limits
* within palloc will ensure that we don't overflow here.
*/
max_size = 8; /* semi-arbitrary small power of 2 */
while (max_size < min_size + LIST_HEADER_OVERHEAD)
max_size *= 2;
max_size -= LIST_HEADER_OVERHEAD;
#else
/*
* For debugging, don't allow any extra space. This forces any cell
* addition to go through enlarge_list() and thus move the existing data.
*/
max_size = min_size;
#endif
newlist = (List *) palloc(offsetof(List, initial_elements) +
max_size * sizeof(ListCell));
newlist->type = type;
newlist->length = min_size;
newlist->max_length = max_size;
newlist->elements = newlist->initial_elements;
return newlist;
}
/*
* Enlarge an existing non-NIL List to have room for at least min_size cells.
*
* This does *not* update list->length, as some callers would find that
* inconvenient. (list->length had better be the correct number of existing
* valid cells, though.)
*/
static void
enlarge_list(List *list, int min_size)
{
int new_max_len;
Assert(min_size > list->max_length); /* else we shouldn't be here */
#ifndef DEBUG_LIST_MEMORY_USAGE
/*
* As above, we prefer power-of-two total allocations; but here we need
* not account for list header overhead. The existing max length might
* not be a power of 2, so don't rely on that.
*/
new_max_len = 16; /* semi-arbitrary small power of 2 */
while (new_max_len < min_size)
new_max_len *= 2;
#else
/* As above, don't allocate anything extra */
new_max_len = min_size;
#endif
if (list->elements == list->initial_elements)
{
List *newlist PG_USED_FOR_ASSERTS_ONLY;
/*
* Replace original in-line allocation with a separate palloc block.
* Ensure it is in the same memory context as the List header. (The
* previous List implementation did not offer any guarantees about
* keeping all list cells in the same context, but it seems reasonable
* to create such a guarantee now.)
*/
list->elements = (ListCell *)
MemoryContextAlloc(GetMemoryChunkContext(list),
new_max_len * sizeof(ListCell));
memcpy(list->elements, list->initial_elements,
list->length * sizeof(ListCell));
/*
* Currently, asking aset.c to reduce the allocated size of the List
* header is pointless in terms of reclaiming space, unless the list
* is very long. However, it seems worth doing anyway to cause the
* no-longer-needed initial_elements[] space to be cleared in
* debugging builds.
*/
newlist = (List *) repalloc(list, offsetof(List, initial_elements));
/* That better not have failed, nor moved the list header */
Assert(newlist == list);
}
else
{
#ifndef DEBUG_LIST_MEMORY_USAGE
/* Normally, let repalloc deal with enlargement */
list->elements = (ListCell *) repalloc(list->elements,
new_max_len * sizeof(ListCell));
#else
/*
* repalloc() might enlarge the space in-place, which we don't want
* for debugging purposes, so forcibly move the data somewhere else.
*/
ListCell *newelements;
newelements = (ListCell *)
MemoryContextAlloc(GetMemoryChunkContext(list),
new_max_len * sizeof(ListCell));
memcpy(newelements, list->elements,
list->length * sizeof(ListCell));
pfree(list->elements);
list->elements = newelements;
#endif
}
list->max_length = new_max_len;
}
/*
* Convenience functions to construct short Lists from given values.
* (These are normally invoked via the list_makeN macros.)
*/
List *
list_make1_impl(NodeTag t, ListCell datum1)
{
List *list = new_list(t, 1);
list->elements[0] = datum1;
check_list_invariants(list);
return list;
}
List *
list_make2_impl(NodeTag t, ListCell datum1, ListCell datum2)
{
List *list = new_list(t, 2);
list->elements[0] = datum1;
list->elements[1] = datum2;
check_list_invariants(list);
return list;
}
List *
list_make3_impl(NodeTag t, ListCell datum1, ListCell datum2,
ListCell datum3)
{
List *list = new_list(t, 3);
list->elements[0] = datum1;
list->elements[1] = datum2;
list->elements[2] = datum3;
check_list_invariants(list);
return list;
}
List *
list_make4_impl(NodeTag t, ListCell datum1, ListCell datum2,
ListCell datum3, ListCell datum4)
{
List *list = new_list(t, 4);
list->elements[0] = datum1;
list->elements[1] = datum2;
list->elements[2] = datum3;
list->elements[3] = datum4;
check_list_invariants(list);
return list;
}
/*
* Make room for a new head cell in the given (non-NIL) list.
*
* The data in the new head cell is undefined; the caller should be
* sure to fill it in
*/
static void
new_head_cell(List *list)
{
/* Enlarge array if necessary */
if (list->length >= list->max_length)
enlarge_list(list, list->length + 1);
/* Now shove the existing data over */
memmove(&list->elements[1], &list->elements[0],
list->length * sizeof(ListCell));
list->length++;
}
/*
* Make room for a new tail cell in the given (non-NIL) list.
*
* The data in the new tail cell is undefined; the caller should be
* sure to fill it in
*/
static void
new_tail_cell(List *list)
{
/* Enlarge array if necessary */
if (list->length >= list->max_length)
enlarge_list(list, list->length + 1);
list->length++;
}
/*
* Append a pointer to the list. A pointer to the modified list is
* returned. Note that this function may or may not destructively
* modify the list; callers should always use this function's return
* value, rather than continuing to use the pointer passed as the
* first argument.
*/
List *
lappend(List *list, void *datum)
{
Assert(IsPointerList(list));
if (list == NIL)
list = new_list(T_List, 1);
else
new_tail_cell(list);
lfirst(list_tail(list)) = datum;
check_list_invariants(list);
return list;
}
/*
* Append an integer to the specified list. See lappend()
*/
List *
lappend_int(List *list, int datum)
{
Assert(IsIntegerList(list));
if (list == NIL)
list = new_list(T_IntList, 1);
else
new_tail_cell(list);
lfirst_int(list_tail(list)) = datum;
check_list_invariants(list);
return list;
}
/*
* Append an OID to the specified list. See lappend()
*/
List *
lappend_oid(List *list, Oid datum)
{
Assert(IsOidList(list));
if (list == NIL)
list = new_list(T_OidList, 1);
else
new_tail_cell(list);
lfirst_oid(list_tail(list)) = datum;
check_list_invariants(list);
return list;
}
/*
* Make room for a new cell at position 'pos' (measured from 0).
* The data in the cell is left undefined, and must be filled in by the
* caller. 'list' is assumed to be non-NIL, and 'pos' must be a valid
* list position, ie, 0 <= pos <= list's length.
* Returns address of the new cell.
*/
static ListCell *
insert_new_cell(List *list, int pos)
{
Assert(pos >= 0 && pos <= list->length);
/* Enlarge array if necessary */
if (list->length >= list->max_length)
enlarge_list(list, list->length + 1);
/* Now shove the existing data over */
if (pos < list->length)
memmove(&list->elements[pos + 1], &list->elements[pos],
(list->length - pos) * sizeof(ListCell));
list->length++;
return &list->elements[pos];
}
/*
* Insert the given datum at position 'pos' (measured from 0) in the list.
* 'pos' must be valid, ie, 0 <= pos <= list's length.
*/
List *
list_insert_nth(List *list, int pos, void *datum)
{
if (list == NIL)
{
Assert(pos == 0);
return list_make1(datum);
}
Assert(IsPointerList(list));
lfirst(insert_new_cell(list, pos)) = datum;
check_list_invariants(list);
return list;
}
List *
list_insert_nth_int(List *list, int pos, int datum)
{
if (list == NIL)
{
Assert(pos == 0);
return list_make1_int(datum);
}
Assert(IsIntegerList(list));
lfirst_int(insert_new_cell(list, pos)) = datum;
check_list_invariants(list);
return list;
}
List *
list_insert_nth_oid(List *list, int pos, Oid datum)
{
if (list == NIL)
{
Assert(pos == 0);
return list_make1_oid(datum);
}
Assert(IsOidList(list));
lfirst_oid(insert_new_cell(list, pos)) = datum;
check_list_invariants(list);
return list;
}
/*
* Add a new cell to the list, in the position after 'prev_cell'. The
* data in the cell is left undefined, and must be filled in by the
* caller. 'list' is assumed to be non-NIL, and 'prev_cell' is assumed
* to be non-NULL and a member of 'list'. Returns address of new cell.
*
* Caution: prev_cell might no longer point into the list after this!
*/
static ListCell *
add_new_cell_after(List *list, ListCell *prev_cell)
{
/* insert_new_cell will assert that this is in-range: */
int pos = prev_cell - list->elements;
return insert_new_cell(list, pos + 1);
}
/*
* Add a new cell to the specified list (which must be non-NIL);
* it will be placed after the list cell 'prev' (which must be
* non-NULL and a member of 'list'). The data placed in the new cell
* is 'datum'.
*/
void
lappend_cell(List *list, ListCell *prev, void *datum)
{
Assert(IsPointerList(list));
lfirst(add_new_cell_after(list, prev)) = datum;
check_list_invariants(list);
}
void
lappend_cell_int(List *list, ListCell *prev, int datum)
{
Assert(IsIntegerList(list));
lfirst_int(add_new_cell_after(list, prev)) = datum;
check_list_invariants(list);
}
void
lappend_cell_oid(List *list, ListCell *prev, Oid datum)
{
Assert(IsOidList(list));
lfirst_oid(add_new_cell_after(list, prev)) = datum;
check_list_invariants(list);
}
/*
* Prepend a new element to the list. A pointer to the modified list
* is returned. Note that this function may or may not destructively
* modify the list; callers should always use this function's return
* value, rather than continuing to use the pointer passed as the
* second argument.
*
* Caution: before Postgres 8.0, the original List was unmodified and
* could be considered to retain its separate identity. This is no longer
* the case.
*/
List *
lcons(void *datum, List *list)
{
Assert(IsPointerList(list));
if (list == NIL)
list = new_list(T_List, 1);
else
new_head_cell(list);
lfirst(list_head(list)) = datum;
check_list_invariants(list);
return list;
}
/*
* Prepend an integer to the list. See lcons()
*/
List *
lcons_int(int datum, List *list)
{
Assert(IsIntegerList(list));
if (list == NIL)
list = new_list(T_IntList, 1);
else
new_head_cell(list);
lfirst_int(list_head(list)) = datum;
check_list_invariants(list);
return list;
}
/*
* Prepend an OID to the list. See lcons()
*/
List *
lcons_oid(Oid datum, List *list)
{
Assert(IsOidList(list));
if (list == NIL)
list = new_list(T_OidList, 1);
else
new_head_cell(list);
lfirst_oid(list_head(list)) = datum;
check_list_invariants(list);
return list;
}
/*
* Concatenate list2 to the end of list1, and return list1. list1 is
* destructively changed, list2 is not. (However, in the case of pointer
* lists, list1 and list2 will point to the same structures.) Callers
* should be sure to use the return value as the new pointer to the
* concatenated list: the 'list1' input pointer may or may not be the
* same as the returned pointer.
*/
List *
list_concat(List *list1, const List *list2)
{
int new_len;
if (list1 == NIL)
return list_copy(list2);
if (list2 == NIL)
return list1;
Assert(list1->type == list2->type);
new_len = list1->length + list2->length;
/* Enlarge array if necessary */
if (new_len > list1->max_length)
enlarge_list(list1, new_len);
/* Even if list1 == list2, using memcpy should be safe here */
memcpy(&list1->elements[list1->length], &list2->elements[0],
list2->length * sizeof(ListCell));
list1->length = new_len;
check_list_invariants(list1);
return list1;
}
/*
* Truncate 'list' to contain no more than 'new_size' elements. This
* modifies the list in-place! Despite this, callers should use the
* pointer returned by this function to refer to the newly truncated
* list -- it may or may not be the same as the pointer that was
* passed.
*
* Note that any cells removed by list_truncate() are NOT pfree'd.
*/
List *
list_truncate(List *list, int new_size)
{
if (new_size <= 0)
return NIL; /* truncate to zero length */
/* If asked to effectively extend the list, do nothing */
if (new_size < list_length(list))
list->length = new_size;
/*
* Note: unlike the individual-list-cell deletion functions, we don't move
* the list cells to new storage, even in DEBUG_LIST_MEMORY_USAGE mode.
* This is because none of them can move in this operation, so just like
* in the old cons-cell-based implementation, this function doesn't
* invalidate any pointers to cells of the list. This is also the reason
* for not wiping the memory of the deleted cells: the old code didn't
* free them either. Perhaps later we'll tighten this up.
*/
return list;
}
/*
* Return true iff 'datum' is a member of the list. Equality is
* determined via equal(), so callers should ensure that they pass a
* Node as 'datum'.
*/
bool
list_member(const List *list, const void *datum)
{
const ListCell *cell;
Assert(IsPointerList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (equal(lfirst(cell), datum))
return true;
}
return false;
}
/*
* Return true iff 'datum' is a member of the list. Equality is
* determined by using simple pointer comparison.
*/
bool
list_member_ptr(const List *list, const void *datum)
{
const ListCell *cell;
Assert(IsPointerList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (lfirst(cell) == datum)
return true;
}
return false;
}
/*
* Return true iff the integer 'datum' is a member of the list.
*/
bool
list_member_int(const List *list, int datum)
{
const ListCell *cell;
Assert(IsIntegerList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (lfirst_int(cell) == datum)
return true;
}
return false;
}
/*
* Return true iff the OID 'datum' is a member of the list.
*/
bool
list_member_oid(const List *list, Oid datum)
{
const ListCell *cell;
Assert(IsOidList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (lfirst_oid(cell) == datum)
return true;
}
return false;
}
/*
* Delete the n'th cell (counting from 0) in list.
*
* The List is pfree'd if this was the last member.
*/
List *
list_delete_nth_cell(List *list, int n)
{
check_list_invariants(list);
Assert(n >= 0 && n < list->length);
/*
* If we're about to delete the last node from the list, free the whole
* list instead and return NIL, which is the only valid representation of
* a zero-length list.
*/
if (list->length == 1)
{
list_free(list);
return NIL;
}
/*
* Otherwise, we normally just collapse out the removed element. But for
* debugging purposes, move the whole list contents someplace else.
*
* (Note that we *must* keep the contents in the same memory context.)
*/
#ifndef DEBUG_LIST_MEMORY_USAGE
memmove(&list->elements[n], &list->elements[n + 1],
(list->length - 1 - n) * sizeof(ListCell));
list->length--;
#else
{
ListCell *newelems;
int newmaxlen = list->length - 1;
newelems = (ListCell *)
MemoryContextAlloc(GetMemoryChunkContext(list),
newmaxlen * sizeof(ListCell));
memcpy(newelems, list->elements, n * sizeof(ListCell));
memcpy(&newelems[n], &list->elements[n + 1],
(list->length - 1 - n) * sizeof(ListCell));
if (list->elements != list->initial_elements)
pfree(list->elements);
else
{
/*
* As in enlarge_list(), tell palloc code we're not using the
* initial_elements space anymore.
*/
List *newlist PG_USED_FOR_ASSERTS_ONLY;
newlist = (List *) repalloc(list, offsetof(List, initial_elements));
Assert(newlist == list);
}
list->elements = newelems;
list->max_length = newmaxlen;
list->length--;
check_list_invariants(list);
}
#endif
return list;
}
/*
* Delete 'cell' from 'list'.
*
* The List is pfree'd if this was the last member. However, we do not
* touch any data the cell might've been pointing to.
*/
List *
list_delete_cell(List *list, ListCell *cell)
{
return list_delete_nth_cell(list, cell - list->elements);
}
/*
* Delete the first cell in list that matches datum, if any.
* Equality is determined via equal().
*/
List *
list_delete(List *list, void *datum)
{
ListCell *cell;
Assert(IsPointerList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (equal(lfirst(cell), datum))
return list_delete_cell(list, cell);
}
/* Didn't find a match: return the list unmodified */
return list;
}
/* As above, but use simple pointer equality */
List *
list_delete_ptr(List *list, void *datum)
{
ListCell *cell;
Assert(IsPointerList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (lfirst(cell) == datum)
return list_delete_cell(list, cell);
}
/* Didn't find a match: return the list unmodified */
return list;
}
/* As above, but for integers */
List *
list_delete_int(List *list, int datum)
{
ListCell *cell;
Assert(IsIntegerList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (lfirst_int(cell) == datum)
return list_delete_cell(list, cell);
}
/* Didn't find a match: return the list unmodified */
return list;
}
/* As above, but for OIDs */
List *
list_delete_oid(List *list, Oid datum)
{
ListCell *cell;
Assert(IsOidList(list));
check_list_invariants(list);
foreach(cell, list)
{
if (lfirst_oid(cell) == datum)
return list_delete_cell(list, cell);
}
/* Didn't find a match: return the list unmodified */
return list;
}
/*
* Delete the first element of the list.
*
* This is useful to replace the Lisp-y code "list = lnext(list);" in cases
* where the intent is to alter the list rather than just traverse it.
* Beware that the list is modified, whereas the Lisp-y coding leaves
* the original list head intact in case there's another pointer to it.
*/
List *
list_delete_first(List *list)
{
check_list_invariants(list);
if (list == NIL)
return NIL; /* would an error be better? */
return list_delete_nth_cell(list, 0);
}
/*
* Generate the union of two lists. This is calculated by copying
* list1 via list_copy(), then adding to it all the members of list2
* that aren't already in list1.
*
* Whether an element is already a member of the list is determined
* via equal().
*
* The returned list is newly-allocated, although the content of the
* cells is the same (i.e. any pointed-to objects are not copied).
*
* NB: this function will NOT remove any duplicates that are present
* in list1 (so it only performs a "union" if list1 is known unique to
* start with). Also, if you are about to write "x = list_union(x, y)"
* you probably want to use list_concat_unique() instead to avoid wasting
* the storage of the old x list.
*
* This function could probably be implemented a lot faster if it is a
* performance bottleneck.
*/
List *
list_union(const List *list1, const List *list2)
{
List *result;
const ListCell *cell;
Assert(IsPointerList(list1));
Assert(IsPointerList(list2));
result = list_copy(list1);
foreach(cell, list2)
{
if (!list_member(result, lfirst(cell)))
result = lappend(result, lfirst(cell));
}
check_list_invariants(result);
return result;
}
/*
* This variant of list_union() determines duplicates via simple
* pointer comparison.
*/
List *
list_union_ptr(const List *list1, const List *list2)
{
List *result;
const ListCell *cell;
Assert(IsPointerList(list1));
Assert(IsPointerList(list2));
result = list_copy(list1);
foreach(cell, list2)
{
if (!list_member_ptr(result, lfirst(cell)))
result = lappend(result, lfirst(cell));
}
check_list_invariants(result);
return result;
}
/*
* This variant of list_union() operates upon lists of integers.
*/
List *
list_union_int(const List *list1, const List *list2)
{
List *result;
const ListCell *cell;
Assert(IsIntegerList(list1));
Assert(IsIntegerList(list2));
result = list_copy(list1);
foreach(cell, list2)
{
if (!list_member_int(result, lfirst_int(cell)))
result = lappend_int(result, lfirst_int(cell));
}
check_list_invariants(result);
return result;
}
/*
* This variant of list_union() operates upon lists of OIDs.
*/
List *
list_union_oid(const List *list1, const List *list2)
{
List *result;
const ListCell *cell;
Assert(IsOidList(list1));
Assert(IsOidList(list2));
result = list_copy(list1);
foreach(cell, list2)
{
if (!list_member_oid(result, lfirst_oid(cell)))
result = lappend_oid(result, lfirst_oid(cell));
}
check_list_invariants(result);
return result;
}
/*
* Return a list that contains all the cells that are in both list1 and
* list2. The returned list is freshly allocated via palloc(), but the
* cells themselves point to the same objects as the cells of the
* input lists.
*
* Duplicate entries in list1 will not be suppressed, so it's only a true
* "intersection" if list1 is known unique beforehand.
*
* This variant works on lists of pointers, and determines list
* membership via equal(). Note that the list1 member will be pointed
* to in the result.
*/
List *
list_intersection(const List *list1, const List *list2)
{
List *result;
const ListCell *cell;
if (list1 == NIL || list2 == NIL)
return NIL;
Assert(IsPointerList(list1));
Assert(IsPointerList(list2));
result = NIL;
foreach(cell, list1)
{
if (list_member(list2, lfirst(cell)))
result = lappend(result, lfirst(cell));
}
check_list_invariants(result);
return result;
}
/*
* As list_intersection but operates on lists of integers.
*/
List *
list_intersection_int(const List *list1, const List *list2)
{
List *result;
const ListCell *cell;
if (list1 == NIL || list2 == NIL)
return NIL;
Assert(IsIntegerList(list1));
Assert(IsIntegerList(list2));
result = NIL;
foreach(cell, list1)
{
if (list_member_int(list2, lfirst_int(cell)))
result = lappend_int(result, lfirst_int(cell));
}
check_list_invariants(result);
return result;
}
/*
* Return a list that contains all the cells in list1 that are not in
* list2. The returned list is freshly allocated via palloc(), but the
* cells themselves point to the same objects as the cells of the
* input lists.
*
* This variant works on lists of pointers, and determines list
* membership via equal()
*/
List *
list_difference(const List *list1, const List *list2)
{
const ListCell *cell;
List *result = NIL;
Assert(IsPointerList(list1));
Assert(IsPointerList(list2));
if (list2 == NIL)
return list_copy(list1);
foreach(cell, list1)
{
if (!list_member(list2, lfirst(cell)))
result = lappend(result, lfirst(cell));
}
check_list_invariants(result);
return result;
}
/*
* This variant of list_difference() determines list membership via
* simple pointer equality.
*/
List *
list_difference_ptr(const List *list1, const List *list2)
{
const ListCell *cell;
List *result = NIL;
Assert(IsPointerList(list1));
Assert(IsPointerList(list2));
if (list2 == NIL)
return list_copy(list1);
foreach(cell, list1)
{
if (!list_member_ptr(list2, lfirst(cell)))
result = lappend(result, lfirst(cell));
}
check_list_invariants(result);
return result;
}
/*
* This variant of list_difference() operates upon lists of integers.
*/
List *
list_difference_int(const List *list1, const List *list2)
{
const ListCell *cell;
List *result = NIL;
Assert(IsIntegerList(list1));
Assert(IsIntegerList(list2));
if (list2 == NIL)
return list_copy(list1);
foreach(cell, list1)
{
if (!list_member_int(list2, lfirst_int(cell)))
result = lappend_int(result, lfirst_int(cell));
}
check_list_invariants(result);
return result;
}
/*
* This variant of list_difference() operates upon lists of OIDs.
*/
List *
list_difference_oid(const List *list1, const List *list2)
{
const ListCell *cell;
List *result = NIL;
Assert(IsOidList(list1));
Assert(IsOidList(list2));
if (list2 == NIL)
return list_copy(list1);
foreach(cell, list1)
{
if (!list_member_oid(list2, lfirst_oid(cell)))
result = lappend_oid(result, lfirst_oid(cell));
}
check_list_invariants(result);
return result;
}
/*
* Append datum to list, but only if it isn't already in the list.
*
* Whether an element is already a member of the list is determined
* via equal().
*/
List *
list_append_unique(List *list, void *datum)
{
if (list_member(list, datum))
return list;
else
return lappend(list, datum);
}
/*
* This variant of list_append_unique() determines list membership via
* simple pointer equality.
*/
List *
list_append_unique_ptr(List *list, void *datum)
{
if (list_member_ptr(list, datum))
return list;
else
return lappend(list, datum);
}
/*
* This variant of list_append_unique() operates upon lists of integers.
*/
List *
list_append_unique_int(List *list, int datum)
{
if (list_member_int(list, datum))
return list;
else
return lappend_int(list, datum);
}
/*
* This variant of list_append_unique() operates upon lists of OIDs.
*/
List *
list_append_unique_oid(List *list, Oid datum)
{
if (list_member_oid(list, datum))
return list;
else
return lappend_oid(list, datum);
}
/*
* Append to list1 each member of list2 that isn't already in list1.
*
* Whether an element is already a member of the list is determined
* via equal().
*
* This is almost the same functionality as list_union(), but list1 is
* modified in-place rather than being copied. However, callers of this
* function may have strict ordering expectations -- i.e. that the relative
* order of those list2 elements that are not duplicates is preserved.
*/
List *
list_concat_unique(List *list1, const List *list2)
{
ListCell *cell;
Assert(IsPointerList(list1));
Assert(IsPointerList(list2));
foreach(cell, list2)
{
if (!list_member(list1, lfirst(cell)))
list1 = lappend(list1, lfirst(cell));
}
check_list_invariants(list1);
return list1;
}
/*
* This variant of list_concat_unique() determines list membership via
* simple pointer equality.
*/
List *
list_concat_unique_ptr(List *list1, const List *list2)
{
ListCell *cell;
Assert(IsPointerList(list1));
Assert(IsPointerList(list2));
foreach(cell, list2)
{
if (!list_member_ptr(list1, lfirst(cell)))
list1 = lappend(list1, lfirst(cell));
}
check_list_invariants(list1);
return list1;
}
/*
* This variant of list_concat_unique() operates upon lists of integers.
*/
List *
list_concat_unique_int(List *list1, const List *list2)
{
ListCell *cell;
Assert(IsIntegerList(list1));
Assert(IsIntegerList(list2));
foreach(cell, list2)
{
if (!list_member_int(list1, lfirst_int(cell)))
list1 = lappend_int(list1, lfirst_int(cell));
}
check_list_invariants(list1);
return list1;
}
/*
* This variant of list_concat_unique() operates upon lists of OIDs.
*/
List *
list_concat_unique_oid(List *list1, const List *list2)
{
ListCell *cell;
Assert(IsOidList(list1));
Assert(IsOidList(list2));
foreach(cell, list2)
{
if (!list_member_oid(list1, lfirst_oid(cell)))
list1 = lappend_oid(list1, lfirst_oid(cell));
}
check_list_invariants(list1);
return list1;
}
/*
* Free all storage in a list, and optionally the pointed-to elements
*/
static void
list_free_private(List *list, bool deep)
{
if (list == NIL)
return; /* nothing to do */
check_list_invariants(list);
if (deep)
{
for (int i = 0; i < list->length; i++)
pfree(lfirst(&list->elements[i]));
}
if (list->elements != list->initial_elements)
pfree(list->elements);
pfree(list);
}
/*
* Free all the cells of the list, as well as the list itself. Any
* objects that are pointed-to by the cells of the list are NOT
* free'd.
*
* On return, the argument to this function has been freed, so the
* caller would be wise to set it to NIL for safety's sake.
*/
void
list_free(List *list)
{
list_free_private(list, false);
}
/*
* Free all the cells of the list, the list itself, and all the
* objects pointed-to by the cells of the list (each element in the
* list must contain a pointer to a palloc()'d region of memory!)
*
* On return, the argument to this function has been freed, so the
* caller would be wise to set it to NIL for safety's sake.
*/
void
list_free_deep(List *list)
{
/*
* A "deep" free operation only makes sense on a list of pointers.
*/
Assert(IsPointerList(list));
list_free_private(list, true);
}
/*
* Return a shallow copy of the specified list.
*/
List *
list_copy(const List *oldlist)
{
List *newlist;
if (oldlist == NIL)
return NIL;
newlist = new_list(oldlist->type, oldlist->length);
memcpy(newlist->elements, oldlist->elements,
newlist->length * sizeof(ListCell));
check_list_invariants(newlist);
return newlist;
}
/*
* Return a shallow copy of the specified list, without the first N elements.
*/
List *
list_copy_tail(const List *oldlist, int nskip)
{
List *newlist;
if (nskip < 0)
nskip = 0; /* would it be better to elog? */
if (oldlist == NIL || nskip >= oldlist->length)
return NIL;
newlist = new_list(oldlist->type, oldlist->length - nskip);
memcpy(newlist->elements, &oldlist->elements[nskip],
newlist->length * sizeof(ListCell));
check_list_invariants(newlist);
return newlist;
}
/*
* Return a deep copy of the specified list.
*
* The list elements are copied via copyObject(), so that this function's
* idea of a "deep" copy is considerably deeper than what list_free_deep()
* means by the same word.
*/
List *
list_copy_deep(const List *oldlist)
{
List *newlist;
if (oldlist == NIL)
return NIL;
/* This is only sensible for pointer Lists */
Assert(IsA(oldlist, List));
newlist = new_list(oldlist->type, oldlist->length);
for (int i = 0; i < newlist->length; i++)
lfirst(&newlist->elements[i]) =
copyObjectImpl(lfirst(&oldlist->elements[i]));
check_list_invariants(newlist);
return newlist;
}
/*
* Sort a list as though by qsort.
*
* A new list is built and returned. Like list_copy, this doesn't make
* fresh copies of any pointed-to data.
*
* The comparator function receives arguments of type ListCell **.
* (XXX that's really inefficient now, but changing it seems like
* material for a standalone patch.)
*/
List *
list_qsort(const List *list, list_qsort_comparator cmp)
{
int len = list_length(list);
ListCell **list_arr;
List *newlist;
ListCell *cell;
int i;
/* Empty list is easy */
if (len == 0)
return NIL;
/* We have to make an array of pointers to satisfy the API */
list_arr = (ListCell **) palloc(sizeof(ListCell *) * len);
i = 0;
foreach(cell, list)
list_arr[i++] = cell;
qsort(list_arr, len, sizeof(ListCell *), cmp);
/* Construct new list (this code is much like list_copy) */
newlist = new_list(list->type, len);
for (i = 0; i < len; i++)
newlist->elements[i] = *list_arr[i];
/* Might as well free the workspace array */
pfree(list_arr);
check_list_invariants(newlist);
return newlist;
}