mirror of
https://github.com/postgres/postgres.git
synced 2025-05-28 00:03:23 -04:00
for the SLRU race condition that I posted a few days ago, but we decided not to use in 8.1 and older branches.
1918 lines
56 KiB
C
1918 lines
56 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* multixact.c
|
|
* PostgreSQL multi-transaction-log manager
|
|
*
|
|
* The pg_multixact manager is a pg_clog-like manager that stores an array
|
|
* of TransactionIds for each MultiXactId. It is a fundamental part of the
|
|
* shared-row-lock implementation. A share-locked tuple stores a
|
|
* MultiXactId in its Xmax, and a transaction that needs to wait for the
|
|
* tuple to be unlocked can sleep on the potentially-several TransactionIds
|
|
* that compose the MultiXactId.
|
|
*
|
|
* We use two SLRU areas, one for storing the offsets at which the data
|
|
* starts for each MultiXactId in the other one. This trick allows us to
|
|
* store variable length arrays of TransactionIds. (We could alternatively
|
|
* use one area containing counts and TransactionIds, with valid MultiXactId
|
|
* values pointing at slots containing counts; but that way seems less robust
|
|
* since it would get completely confused if someone inquired about a bogus
|
|
* MultiXactId that pointed to an intermediate slot containing an XID.)
|
|
*
|
|
* XLOG interactions: this module generates an XLOG record whenever a new
|
|
* OFFSETs or MEMBERs page is initialized to zeroes, as well as an XLOG record
|
|
* whenever a new MultiXactId is defined. This allows us to completely
|
|
* rebuild the data entered since the last checkpoint during XLOG replay.
|
|
* Because this is possible, we need not follow the normal rule of
|
|
* "write WAL before data"; the only correctness guarantee needed is that
|
|
* we flush and sync all dirty OFFSETs and MEMBERs pages to disk before a
|
|
* checkpoint is considered complete. If a page does make it to disk ahead
|
|
* of corresponding WAL records, it will be forcibly zeroed before use anyway.
|
|
* Therefore, we don't need to mark our pages with LSN information; we have
|
|
* enough synchronization already.
|
|
*
|
|
* Like clog.c, and unlike subtrans.c, we have to preserve state across
|
|
* crashes and ensure that MXID and offset numbering increases monotonically
|
|
* across a crash. We do this in the same way as it's done for transaction
|
|
* IDs: the WAL record is guaranteed to contain evidence of every MXID we
|
|
* could need to worry about, and we just make sure that at the end of
|
|
* replay, the next-MXID and next-offset counters are at least as large as
|
|
* anything we saw during replay.
|
|
*
|
|
*
|
|
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* $PostgreSQL: pgsql/src/backend/access/transam/multixact.c,v 1.12 2005/11/05 21:19:47 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/multixact.h"
|
|
#include "access/slru.h"
|
|
#include "access/xact.h"
|
|
#include "miscadmin.h"
|
|
#include "utils/memutils.h"
|
|
#include "storage/backendid.h"
|
|
#include "storage/lmgr.h"
|
|
#include "storage/procarray.h"
|
|
|
|
|
|
/*
|
|
* Defines for MultiXactOffset page sizes. A page is the same BLCKSZ as is
|
|
* used everywhere else in Postgres.
|
|
*
|
|
* Note: because both MultiXactOffsets and TransactionIds are 32 bits and
|
|
* wrap around at 0xFFFFFFFF, MultiXact page numbering also wraps around at
|
|
* 0xFFFFFFFF/MULTIXACT_*_PER_PAGE, and segment numbering at
|
|
* 0xFFFFFFFF/MULTIXACT_*_PER_PAGE/SLRU_SEGMENTS_PER_PAGE. We need take no
|
|
* explicit notice of that fact in this module, except when comparing segment
|
|
* and page numbers in TruncateMultiXact
|
|
* (see MultiXact{Offset,Member}PagePrecedes).
|
|
*/
|
|
|
|
/* We need four bytes per offset and also four bytes per member */
|
|
#define MULTIXACT_OFFSETS_PER_PAGE (BLCKSZ / sizeof(MultiXactOffset))
|
|
#define MULTIXACT_MEMBERS_PER_PAGE (BLCKSZ / sizeof(TransactionId))
|
|
|
|
#define MultiXactIdToOffsetPage(xid) \
|
|
((xid) / (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
|
|
#define MultiXactIdToOffsetEntry(xid) \
|
|
((xid) % (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
|
|
|
|
#define MXOffsetToMemberPage(xid) \
|
|
((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
|
|
#define MXOffsetToMemberEntry(xid) \
|
|
((xid) % (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
|
|
|
|
|
|
/*
|
|
* Links to shared-memory data structures for MultiXact control
|
|
*/
|
|
static SlruCtlData MultiXactOffsetCtlData;
|
|
static SlruCtlData MultiXactMemberCtlData;
|
|
|
|
#define MultiXactOffsetCtl (&MultiXactOffsetCtlData)
|
|
#define MultiXactMemberCtl (&MultiXactMemberCtlData)
|
|
|
|
/*
|
|
* MultiXact state shared across all backends. All this state is protected
|
|
* by MultiXactGenLock. (We also use MultiXactOffsetControlLock and
|
|
* MultiXactMemberControlLock to guard accesses to the two sets of SLRU
|
|
* buffers. For concurrency's sake, we avoid holding more than one of these
|
|
* locks at a time.)
|
|
*/
|
|
typedef struct MultiXactStateData
|
|
{
|
|
/* next-to-be-assigned MultiXactId */
|
|
MultiXactId nextMXact;
|
|
|
|
/* next-to-be-assigned offset */
|
|
MultiXactOffset nextOffset;
|
|
|
|
/* the Offset SLRU area was last truncated at this MultiXactId */
|
|
MultiXactId lastTruncationPoint;
|
|
|
|
/*
|
|
* Per-backend data starts here. We have two arrays stored in the area
|
|
* immediately following the MultiXactStateData struct. Each is indexed by
|
|
* BackendId. (Note: valid BackendIds run from 1 to MaxBackends; element
|
|
* zero of each array is never used.)
|
|
*
|
|
* OldestMemberMXactId[k] is the oldest MultiXactId each backend's current
|
|
* transaction(s) could possibly be a member of, or InvalidMultiXactId
|
|
* when the backend has no live transaction that could possibly be a
|
|
* member of a MultiXact. Each backend sets its entry to the current
|
|
* nextMXact counter just before first acquiring a shared lock in a given
|
|
* transaction, and clears it at transaction end. (This works because only
|
|
* during or after acquiring a shared lock could an XID possibly become a
|
|
* member of a MultiXact, and that MultiXact would have to be created
|
|
* during or after the lock acquisition.)
|
|
*
|
|
* OldestVisibleMXactId[k] is the oldest MultiXactId each backend's current
|
|
* transaction(s) think is potentially live, or InvalidMultiXactId when
|
|
* not in a transaction or not in a transaction that's paid any attention
|
|
* to MultiXacts yet. This is computed when first needed in a given
|
|
* transaction, and cleared at transaction end. We can compute it as the
|
|
* minimum of the valid OldestMemberMXactId[] entries at the time we
|
|
* compute it (using nextMXact if none are valid). Each backend is
|
|
* required not to attempt to access any SLRU data for MultiXactIds older
|
|
* than its own OldestVisibleMXactId[] setting; this is necessary because
|
|
* the checkpointer could truncate away such data at any instant.
|
|
*
|
|
* The checkpointer can compute the safe truncation point as the oldest valid
|
|
* value among all the OldestMemberMXactId[] and OldestVisibleMXactId[]
|
|
* entries, or nextMXact if none are valid. Clearly, it is not possible
|
|
* for any later-computed OldestVisibleMXactId value to be older than
|
|
* this, and so there is no risk of truncating data that is still needed.
|
|
*/
|
|
MultiXactId perBackendXactIds[1]; /* VARIABLE LENGTH ARRAY */
|
|
} MultiXactStateData;
|
|
|
|
/* Pointers to the state data in shared memory */
|
|
static MultiXactStateData *MultiXactState;
|
|
static MultiXactId *OldestMemberMXactId;
|
|
static MultiXactId *OldestVisibleMXactId;
|
|
|
|
|
|
/*
|
|
* Definitions for the backend-local MultiXactId cache.
|
|
*
|
|
* We use this cache to store known MultiXacts, so we don't need to go to
|
|
* SLRU areas everytime.
|
|
*
|
|
* The cache lasts for the duration of a single transaction, the rationale
|
|
* for this being that most entries will contain our own TransactionId and
|
|
* so they will be uninteresting by the time our next transaction starts.
|
|
* (XXX not clear that this is correct --- other members of the MultiXact
|
|
* could hang around longer than we did. However, it's not clear what a
|
|
* better policy for flushing old cache entries would be.)
|
|
*
|
|
* We allocate the cache entries in a memory context that is deleted at
|
|
* transaction end, so we don't need to do retail freeing of entries.
|
|
*/
|
|
typedef struct mXactCacheEnt
|
|
{
|
|
struct mXactCacheEnt *next;
|
|
MultiXactId multi;
|
|
int nxids;
|
|
TransactionId xids[1]; /* VARIABLE LENGTH ARRAY */
|
|
} mXactCacheEnt;
|
|
|
|
static mXactCacheEnt *MXactCache = NULL;
|
|
static MemoryContext MXactContext = NULL;
|
|
|
|
|
|
#ifdef MULTIXACT_DEBUG
|
|
#define debug_elog2(a,b) elog(a,b)
|
|
#define debug_elog3(a,b,c) elog(a,b,c)
|
|
#define debug_elog4(a,b,c,d) elog(a,b,c,d)
|
|
#define debug_elog5(a,b,c,d,e) elog(a,b,c,d,e)
|
|
#else
|
|
#define debug_elog2(a,b)
|
|
#define debug_elog3(a,b,c)
|
|
#define debug_elog4(a,b,c,d)
|
|
#define debug_elog5(a,b,c,d,e)
|
|
#endif
|
|
|
|
/* internal MultiXactId management */
|
|
static void MultiXactIdSetOldestVisible(void);
|
|
static MultiXactId CreateMultiXactId(int nxids, TransactionId *xids);
|
|
static void RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
|
|
int nxids, TransactionId *xids);
|
|
static MultiXactId GetNewMultiXactId(int nxids, MultiXactOffset *offset);
|
|
|
|
/* MultiXact cache management */
|
|
static MultiXactId mXactCacheGetBySet(int nxids, TransactionId *xids);
|
|
static int mXactCacheGetById(MultiXactId multi, TransactionId **xids);
|
|
static void mXactCachePut(MultiXactId multi, int nxids, TransactionId *xids);
|
|
static int xidComparator(const void *arg1, const void *arg2);
|
|
|
|
#ifdef MULTIXACT_DEBUG
|
|
static char *mxid_to_string(MultiXactId multi, int nxids, TransactionId *xids);
|
|
#endif
|
|
|
|
/* management of SLRU infrastructure */
|
|
static int ZeroMultiXactOffsetPage(int pageno, bool writeXlog);
|
|
static int ZeroMultiXactMemberPage(int pageno, bool writeXlog);
|
|
static bool MultiXactOffsetPagePrecedes(int page1, int page2);
|
|
static bool MultiXactMemberPagePrecedes(int page1, int page2);
|
|
static bool MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2);
|
|
static bool MultiXactOffsetPrecedes(MultiXactOffset offset1,
|
|
MultiXactOffset offset2);
|
|
static void ExtendMultiXactOffset(MultiXactId multi);
|
|
static void ExtendMultiXactMember(MultiXactOffset offset, int nmembers);
|
|
static void TruncateMultiXact(void);
|
|
static void WriteMZeroPageXlogRec(int pageno, uint8 info);
|
|
|
|
|
|
/*
|
|
* MultiXactIdCreate
|
|
* Construct a MultiXactId representing two TransactionIds.
|
|
*
|
|
* The two XIDs must be different.
|
|
*
|
|
* NB - we don't worry about our local MultiXactId cache here, because that
|
|
* is handled by the lower-level routines.
|
|
*/
|
|
MultiXactId
|
|
MultiXactIdCreate(TransactionId xid1, TransactionId xid2)
|
|
{
|
|
MultiXactId newMulti;
|
|
TransactionId xids[2];
|
|
|
|
AssertArg(TransactionIdIsValid(xid1));
|
|
AssertArg(TransactionIdIsValid(xid2));
|
|
|
|
Assert(!TransactionIdEquals(xid1, xid2));
|
|
|
|
/*
|
|
* Note: unlike MultiXactIdExpand, we don't bother to check that both XIDs
|
|
* are still running. In typical usage, xid2 will be our own XID and the
|
|
* caller just did a check on xid1, so it'd be wasted effort.
|
|
*/
|
|
|
|
xids[0] = xid1;
|
|
xids[1] = xid2;
|
|
|
|
newMulti = CreateMultiXactId(2, xids);
|
|
|
|
debug_elog5(DEBUG2, "Create: returning %u for %u, %u",
|
|
newMulti, xid1, xid2);
|
|
|
|
return newMulti;
|
|
}
|
|
|
|
/*
|
|
* MultiXactIdExpand
|
|
* Add a TransactionId to a pre-existing MultiXactId.
|
|
*
|
|
* If the TransactionId is already a member of the passed MultiXactId,
|
|
* just return it as-is.
|
|
*
|
|
* Note that we do NOT actually modify the membership of a pre-existing
|
|
* MultiXactId; instead we create a new one. This is necessary to avoid
|
|
* a race condition against MultiXactIdWait (see notes there).
|
|
*
|
|
* NB - we don't worry about our local MultiXactId cache here, because that
|
|
* is handled by the lower-level routines.
|
|
*/
|
|
MultiXactId
|
|
MultiXactIdExpand(MultiXactId multi, TransactionId xid)
|
|
{
|
|
MultiXactId newMulti;
|
|
TransactionId *members;
|
|
TransactionId *newMembers;
|
|
int nmembers;
|
|
int i;
|
|
int j;
|
|
|
|
AssertArg(MultiXactIdIsValid(multi));
|
|
AssertArg(TransactionIdIsValid(xid));
|
|
|
|
debug_elog4(DEBUG2, "Expand: received multi %u, xid %u",
|
|
multi, xid);
|
|
|
|
nmembers = GetMultiXactIdMembers(multi, &members);
|
|
|
|
if (nmembers < 0)
|
|
{
|
|
/*
|
|
* The MultiXactId is obsolete. This can only happen if all the
|
|
* MultiXactId members stop running between the caller checking and
|
|
* passing it to us. It would be better to return that fact to the
|
|
* caller, but it would complicate the API and it's unlikely to happen
|
|
* too often, so just deal with it by creating a singleton MultiXact.
|
|
*/
|
|
newMulti = CreateMultiXactId(1, &xid);
|
|
|
|
debug_elog4(DEBUG2, "Expand: %u has no members, create singleton %u",
|
|
multi, newMulti);
|
|
return newMulti;
|
|
}
|
|
|
|
/*
|
|
* If the TransactionId is already a member of the MultiXactId, just
|
|
* return the existing MultiXactId.
|
|
*/
|
|
for (i = 0; i < nmembers; i++)
|
|
{
|
|
if (TransactionIdEquals(members[i], xid))
|
|
{
|
|
debug_elog4(DEBUG2, "Expand: %u is already a member of %u",
|
|
xid, multi);
|
|
pfree(members);
|
|
return multi;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine which of the members of the MultiXactId are still running,
|
|
* and use them to create a new one. (Removing dead members is just an
|
|
* optimization, but a useful one. Note we have the same race condition
|
|
* here as above: j could be 0 at the end of the loop.)
|
|
*/
|
|
newMembers = (TransactionId *)
|
|
palloc(sizeof(TransactionId) * (nmembers + 1));
|
|
|
|
for (i = 0, j = 0; i < nmembers; i++)
|
|
{
|
|
if (TransactionIdIsInProgress(members[i]))
|
|
newMembers[j++] = members[i];
|
|
}
|
|
|
|
newMembers[j++] = xid;
|
|
newMulti = CreateMultiXactId(j, newMembers);
|
|
|
|
pfree(members);
|
|
pfree(newMembers);
|
|
|
|
debug_elog3(DEBUG2, "Expand: returning new multi %u", newMulti);
|
|
|
|
return newMulti;
|
|
}
|
|
|
|
/*
|
|
* MultiXactIdIsRunning
|
|
* Returns whether a MultiXactId is "running".
|
|
*
|
|
* We return true if at least one member of the given MultiXactId is still
|
|
* running. Note that a "false" result is certain not to change,
|
|
* because it is not legal to add members to an existing MultiXactId.
|
|
*/
|
|
bool
|
|
MultiXactIdIsRunning(MultiXactId multi)
|
|
{
|
|
TransactionId *members;
|
|
TransactionId myXid;
|
|
int nmembers;
|
|
int i;
|
|
|
|
debug_elog3(DEBUG2, "IsRunning %u?", multi);
|
|
|
|
nmembers = GetMultiXactIdMembers(multi, &members);
|
|
|
|
if (nmembers < 0)
|
|
{
|
|
debug_elog2(DEBUG2, "IsRunning: no members");
|
|
return false;
|
|
}
|
|
|
|
/* checking for myself is cheap */
|
|
myXid = GetTopTransactionId();
|
|
|
|
for (i = 0; i < nmembers; i++)
|
|
{
|
|
if (TransactionIdEquals(members[i], myXid))
|
|
{
|
|
debug_elog3(DEBUG2, "IsRunning: I (%d) am running!", i);
|
|
pfree(members);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This could be made faster by having another entry point in procarray.c,
|
|
* walking the PGPROC array only once for all the members. But in most
|
|
* cases nmembers should be small enough that it doesn't much matter.
|
|
*/
|
|
for (i = 0; i < nmembers; i++)
|
|
{
|
|
if (TransactionIdIsInProgress(members[i]))
|
|
{
|
|
debug_elog4(DEBUG2, "IsRunning: member %d (%u) is running",
|
|
i, members[i]);
|
|
pfree(members);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
pfree(members);
|
|
|
|
debug_elog3(DEBUG2, "IsRunning: %u is not running", multi);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* MultiXactIdSetOldestMember
|
|
* Save the oldest MultiXactId this transaction could be a member of.
|
|
*
|
|
* We set the OldestMemberMXactId for a given transaction the first time
|
|
* it's going to acquire a shared lock. We need to do this even if we end
|
|
* up using a TransactionId instead of a MultiXactId, because there is a
|
|
* chance that another transaction would add our XID to a MultiXactId.
|
|
*
|
|
* The value to set is the next-to-be-assigned MultiXactId, so this is meant
|
|
* to be called just before acquiring a shared lock.
|
|
*/
|
|
void
|
|
MultiXactIdSetOldestMember(void)
|
|
{
|
|
if (!MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]))
|
|
{
|
|
MultiXactId nextMXact;
|
|
|
|
/*
|
|
* You might think we don't need to acquire a lock here, since
|
|
* fetching and storing of TransactionIds is probably atomic, but in
|
|
* fact we do: suppose we pick up nextMXact and then lose the CPU for
|
|
* a long time. Someone else could advance nextMXact, and then
|
|
* another someone else could compute an OldestVisibleMXactId that
|
|
* would be after the value we are going to store when we get control
|
|
* back. Which would be wrong.
|
|
*/
|
|
LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
|
|
|
|
/*
|
|
* We have to beware of the possibility that nextMXact is in the
|
|
* wrapped-around state. We don't fix the counter itself here, but we
|
|
* must be sure to store a valid value in our array entry.
|
|
*/
|
|
nextMXact = MultiXactState->nextMXact;
|
|
if (nextMXact < FirstMultiXactId)
|
|
nextMXact = FirstMultiXactId;
|
|
|
|
OldestMemberMXactId[MyBackendId] = nextMXact;
|
|
|
|
LWLockRelease(MultiXactGenLock);
|
|
|
|
debug_elog4(DEBUG2, "MultiXact: setting OldestMember[%d] = %u",
|
|
MyBackendId, nextMXact);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MultiXactIdSetOldestVisible
|
|
* Save the oldest MultiXactId this transaction considers possibly live.
|
|
*
|
|
* We set the OldestVisibleMXactId for a given transaction the first time
|
|
* it's going to inspect any MultiXactId. Once we have set this, we are
|
|
* guaranteed that the checkpointer won't truncate off SLRU data for
|
|
* MultiXactIds at or after our OldestVisibleMXactId.
|
|
*
|
|
* The value to set is the oldest of nextMXact and all the valid per-backend
|
|
* OldestMemberMXactId[] entries. Because of the locking we do, we can be
|
|
* certain that no subsequent call to MultiXactIdSetOldestMember can set
|
|
* an OldestMemberMXactId[] entry older than what we compute here. Therefore
|
|
* there is no live transaction, now or later, that can be a member of any
|
|
* MultiXactId older than the OldestVisibleMXactId we compute here.
|
|
*/
|
|
static void
|
|
MultiXactIdSetOldestVisible(void)
|
|
{
|
|
if (!MultiXactIdIsValid(OldestVisibleMXactId[MyBackendId]))
|
|
{
|
|
MultiXactId oldestMXact;
|
|
int i;
|
|
|
|
LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
|
|
|
|
/*
|
|
* We have to beware of the possibility that nextMXact is in the
|
|
* wrapped-around state. We don't fix the counter itself here, but we
|
|
* must be sure to store a valid value in our array entry.
|
|
*/
|
|
oldestMXact = MultiXactState->nextMXact;
|
|
if (oldestMXact < FirstMultiXactId)
|
|
oldestMXact = FirstMultiXactId;
|
|
|
|
for (i = 1; i <= MaxBackends; i++)
|
|
{
|
|
MultiXactId thisoldest = OldestMemberMXactId[i];
|
|
|
|
if (MultiXactIdIsValid(thisoldest) &&
|
|
MultiXactIdPrecedes(thisoldest, oldestMXact))
|
|
oldestMXact = thisoldest;
|
|
}
|
|
|
|
OldestVisibleMXactId[MyBackendId] = oldestMXact;
|
|
|
|
LWLockRelease(MultiXactGenLock);
|
|
|
|
debug_elog4(DEBUG2, "MultiXact: setting OldestVisible[%d] = %u",
|
|
MyBackendId, oldestMXact);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MultiXactIdWait
|
|
* Sleep on a MultiXactId.
|
|
*
|
|
* We do this by sleeping on each member using XactLockTableWait. Any
|
|
* members that belong to the current backend are *not* waited for, however;
|
|
* this would not merely be useless but would lead to Assert failure inside
|
|
* XactLockTableWait. By the time this returns, it is certain that all
|
|
* transactions *of other backends* that were members of the MultiXactId
|
|
* are dead (and no new ones can have been added, since it is not legal
|
|
* to add members to an existing MultiXactId).
|
|
*
|
|
* But by the time we finish sleeping, someone else may have changed the Xmax
|
|
* of the containing tuple, so the caller needs to iterate on us somehow.
|
|
*/
|
|
void
|
|
MultiXactIdWait(MultiXactId multi)
|
|
{
|
|
TransactionId *members;
|
|
int nmembers;
|
|
|
|
nmembers = GetMultiXactIdMembers(multi, &members);
|
|
|
|
if (nmembers >= 0)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nmembers; i++)
|
|
{
|
|
TransactionId member = members[i];
|
|
|
|
debug_elog4(DEBUG2, "MultiXactIdWait: waiting for %d (%u)",
|
|
i, member);
|
|
if (!TransactionIdIsCurrentTransactionId(member))
|
|
XactLockTableWait(member);
|
|
}
|
|
|
|
pfree(members);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ConditionalMultiXactIdWait
|
|
* As above, but only lock if we can get the lock without blocking.
|
|
*/
|
|
bool
|
|
ConditionalMultiXactIdWait(MultiXactId multi)
|
|
{
|
|
bool result = true;
|
|
TransactionId *members;
|
|
int nmembers;
|
|
|
|
nmembers = GetMultiXactIdMembers(multi, &members);
|
|
|
|
if (nmembers >= 0)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nmembers; i++)
|
|
{
|
|
TransactionId member = members[i];
|
|
|
|
debug_elog4(DEBUG2, "ConditionalMultiXactIdWait: trying %d (%u)",
|
|
i, member);
|
|
if (!TransactionIdIsCurrentTransactionId(member))
|
|
{
|
|
result = ConditionalXactLockTableWait(member);
|
|
if (!result)
|
|
break;
|
|
}
|
|
}
|
|
|
|
pfree(members);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* CreateMultiXactId
|
|
* Make a new MultiXactId
|
|
*
|
|
* Make XLOG, SLRU and cache entries for a new MultiXactId, recording the
|
|
* given TransactionIds as members. Returns the newly created MultiXactId.
|
|
*
|
|
* NB: the passed xids[] array will be sorted in-place.
|
|
*/
|
|
static MultiXactId
|
|
CreateMultiXactId(int nxids, TransactionId *xids)
|
|
{
|
|
MultiXactId multi;
|
|
MultiXactOffset offset;
|
|
XLogRecData rdata[2];
|
|
xl_multixact_create xlrec;
|
|
|
|
debug_elog3(DEBUG2, "Create: %s",
|
|
mxid_to_string(InvalidMultiXactId, nxids, xids));
|
|
|
|
/*
|
|
* See if the same set of XIDs already exists in our cache; if so, just
|
|
* re-use that MultiXactId. (Note: it might seem that looking in our
|
|
* cache is insufficient, and we ought to search disk to see if a
|
|
* duplicate definition already exists. But since we only ever create
|
|
* MultiXacts containing our own XID, in most cases any such MultiXacts
|
|
* were in fact created by us, and so will be in our cache. There are
|
|
* corner cases where someone else added us to a MultiXact without our
|
|
* knowledge, but it's not worth checking for.)
|
|
*/
|
|
multi = mXactCacheGetBySet(nxids, xids);
|
|
if (MultiXactIdIsValid(multi))
|
|
{
|
|
debug_elog2(DEBUG2, "Create: in cache!");
|
|
return multi;
|
|
}
|
|
|
|
/*
|
|
* Assign the MXID and offsets range to use, and make sure there is
|
|
* space in the OFFSETs and MEMBERs files. NB: this routine does
|
|
* START_CRIT_SECTION().
|
|
*/
|
|
multi = GetNewMultiXactId(nxids, &offset);
|
|
|
|
/*
|
|
* Make an XLOG entry describing the new MXID.
|
|
*
|
|
* Note: we need not flush this XLOG entry to disk before proceeding. The
|
|
* only way for the MXID to be referenced from any data page is for
|
|
* heap_lock_tuple() to have put it there, and heap_lock_tuple() generates
|
|
* an XLOG record that must follow ours. The normal LSN interlock between
|
|
* the data page and that XLOG record will ensure that our XLOG record
|
|
* reaches disk first. If the SLRU members/offsets data reaches disk
|
|
* sooner than the XLOG record, we do not care because we'll overwrite it
|
|
* with zeroes unless the XLOG record is there too; see notes at top of
|
|
* this file.
|
|
*/
|
|
xlrec.mid = multi;
|
|
xlrec.moff = offset;
|
|
xlrec.nxids = nxids;
|
|
|
|
rdata[0].data = (char *) (&xlrec);
|
|
rdata[0].len = MinSizeOfMultiXactCreate;
|
|
rdata[0].buffer = InvalidBuffer;
|
|
rdata[0].next = &(rdata[1]);
|
|
rdata[1].data = (char *) xids;
|
|
rdata[1].len = nxids * sizeof(TransactionId);
|
|
rdata[1].buffer = InvalidBuffer;
|
|
rdata[1].next = NULL;
|
|
|
|
(void) XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_CREATE_ID, rdata);
|
|
|
|
/* Now enter the information into the OFFSETs and MEMBERs logs */
|
|
RecordNewMultiXact(multi, offset, nxids, xids);
|
|
|
|
/* Done with critical section */
|
|
END_CRIT_SECTION();
|
|
|
|
/* Store the new MultiXactId in the local cache, too */
|
|
mXactCachePut(multi, nxids, xids);
|
|
|
|
debug_elog2(DEBUG2, "Create: all done");
|
|
|
|
return multi;
|
|
}
|
|
|
|
/*
|
|
* RecordNewMultiXact
|
|
* Write info about a new multixact into the offsets and members files
|
|
*
|
|
* This is broken out of CreateMultiXactId so that xlog replay can use it.
|
|
*/
|
|
static void
|
|
RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
|
|
int nxids, TransactionId *xids)
|
|
{
|
|
int pageno;
|
|
int prev_pageno;
|
|
int entryno;
|
|
int slotno;
|
|
MultiXactOffset *offptr;
|
|
int i;
|
|
|
|
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
|
|
|
|
pageno = MultiXactIdToOffsetPage(multi);
|
|
entryno = MultiXactIdToOffsetEntry(multi);
|
|
|
|
/*
|
|
* Note: we pass the MultiXactId to SimpleLruReadPage as the "transaction"
|
|
* to complain about if there's any I/O error. This is kinda bogus, but
|
|
* since the errors will always give the full pathname, it should be clear
|
|
* enough that a MultiXactId is really involved. Perhaps someday we'll
|
|
* take the trouble to generalize the slru.c error reporting code.
|
|
*/
|
|
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
|
|
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
|
|
offptr += entryno;
|
|
|
|
*offptr = offset;
|
|
|
|
MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
|
|
|
|
/* Exchange our lock */
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
|
|
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
|
|
|
|
prev_pageno = -1;
|
|
|
|
for (i = 0; i < nxids; i++, offset++)
|
|
{
|
|
TransactionId *memberptr;
|
|
|
|
pageno = MXOffsetToMemberPage(offset);
|
|
entryno = MXOffsetToMemberEntry(offset);
|
|
|
|
if (pageno != prev_pageno)
|
|
{
|
|
slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, multi);
|
|
prev_pageno = pageno;
|
|
}
|
|
|
|
memberptr = (TransactionId *)
|
|
MultiXactMemberCtl->shared->page_buffer[slotno];
|
|
memberptr += entryno;
|
|
|
|
*memberptr = xids[i];
|
|
|
|
MultiXactMemberCtl->shared->page_dirty[slotno] = true;
|
|
}
|
|
|
|
LWLockRelease(MultiXactMemberControlLock);
|
|
}
|
|
|
|
/*
|
|
* GetNewMultiXactId
|
|
* Get the next MultiXactId.
|
|
*
|
|
* Also, reserve the needed amount of space in the "members" area. The
|
|
* starting offset of the reserved space is returned in *offset.
|
|
*
|
|
* This may generate XLOG records for expansion of the offsets and/or members
|
|
* files. Unfortunately, we have to do that while holding MultiXactGenLock
|
|
* to avoid race conditions --- the XLOG record for zeroing a page must appear
|
|
* before any backend can possibly try to store data in that page!
|
|
*
|
|
* We start a critical section before advancing the shared counters. The
|
|
* caller must end the critical section after writing SLRU data.
|
|
*/
|
|
static MultiXactId
|
|
GetNewMultiXactId(int nxids, MultiXactOffset *offset)
|
|
{
|
|
MultiXactId result;
|
|
MultiXactOffset nextOffset;
|
|
|
|
debug_elog3(DEBUG2, "GetNew: for %d xids", nxids);
|
|
|
|
/* MultiXactIdSetOldestMember() must have been called already */
|
|
Assert(MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]));
|
|
|
|
LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
|
|
|
|
/* Handle wraparound of the nextMXact counter */
|
|
if (MultiXactState->nextMXact < FirstMultiXactId)
|
|
MultiXactState->nextMXact = FirstMultiXactId;
|
|
|
|
/*
|
|
* Assign the MXID, and make sure there is room for it in the file.
|
|
*/
|
|
result = MultiXactState->nextMXact;
|
|
|
|
ExtendMultiXactOffset(result);
|
|
|
|
/*
|
|
* Reserve the members space, similarly to above. Also, be
|
|
* careful not to return zero as the starting offset for any multixact.
|
|
* See GetMultiXactIdMembers() for motivation.
|
|
*/
|
|
nextOffset = MultiXactState->nextOffset;
|
|
if (nextOffset == 0)
|
|
{
|
|
*offset = 1;
|
|
nxids++; /* allocate member slot 0 too */
|
|
}
|
|
else
|
|
*offset = nextOffset;
|
|
|
|
ExtendMultiXactMember(nextOffset, nxids);
|
|
|
|
/*
|
|
* Critical section from here until caller has written the data into
|
|
* the just-reserved SLRU space; we don't want to error out with a partly
|
|
* written MultiXact structure. (In particular, failing to write our
|
|
* start offset after advancing nextMXact would effectively corrupt the
|
|
* previous MultiXact.)
|
|
*/
|
|
START_CRIT_SECTION();
|
|
|
|
/*
|
|
* Advance counters. As in GetNewTransactionId(), this must not happen
|
|
* until after file extension has succeeded!
|
|
*
|
|
* We don't care about MultiXactId wraparound here; it will be handled by
|
|
* the next iteration. But note that nextMXact may be InvalidMultiXactId
|
|
* after this routine exits, so anyone else looking at the variable must
|
|
* be prepared to deal with that. Similarly, nextOffset may be zero,
|
|
* but we won't use that as the actual start offset of the next multixact.
|
|
*/
|
|
(MultiXactState->nextMXact)++;
|
|
|
|
MultiXactState->nextOffset += nxids;
|
|
|
|
LWLockRelease(MultiXactGenLock);
|
|
|
|
debug_elog4(DEBUG2, "GetNew: returning %u offset %u", result, *offset);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* GetMultiXactIdMembers
|
|
* Returns the set of TransactionIds that make up a MultiXactId
|
|
*
|
|
* We return -1 if the MultiXactId is too old to possibly have any members
|
|
* still running; in that case we have not actually looked them up, and
|
|
* *xids is not set.
|
|
*/
|
|
int
|
|
GetMultiXactIdMembers(MultiXactId multi, TransactionId **xids)
|
|
{
|
|
int pageno;
|
|
int prev_pageno;
|
|
int entryno;
|
|
int slotno;
|
|
MultiXactOffset *offptr;
|
|
MultiXactOffset offset;
|
|
int length;
|
|
int truelength;
|
|
int i;
|
|
MultiXactId nextMXact;
|
|
MultiXactId tmpMXact;
|
|
MultiXactOffset nextOffset;
|
|
TransactionId *ptr;
|
|
|
|
debug_elog3(DEBUG2, "GetMembers: asked for %u", multi);
|
|
|
|
Assert(MultiXactIdIsValid(multi));
|
|
|
|
/* See if the MultiXactId is in the local cache */
|
|
length = mXactCacheGetById(multi, xids);
|
|
if (length >= 0)
|
|
{
|
|
debug_elog3(DEBUG2, "GetMembers: found %s in the cache",
|
|
mxid_to_string(multi, length, *xids));
|
|
return length;
|
|
}
|
|
|
|
/* Set our OldestVisibleMXactId[] entry if we didn't already */
|
|
MultiXactIdSetOldestVisible();
|
|
|
|
/*
|
|
* We check known limits on MultiXact before resorting to the SLRU area.
|
|
*
|
|
* An ID older than our OldestVisibleMXactId[] entry can't possibly still
|
|
* be running, and we'd run the risk of trying to read already-truncated
|
|
* SLRU data if we did try to examine it.
|
|
*
|
|
* Conversely, an ID >= nextMXact shouldn't ever be seen here; if it is
|
|
* seen, it implies undetected ID wraparound has occurred. We just
|
|
* silently assume that such an ID is no longer running.
|
|
*
|
|
* Shared lock is enough here since we aren't modifying any global state.
|
|
* Also, we can examine our own OldestVisibleMXactId without the lock,
|
|
* since no one else is allowed to change it.
|
|
*/
|
|
if (MultiXactIdPrecedes(multi, OldestVisibleMXactId[MyBackendId]))
|
|
{
|
|
debug_elog2(DEBUG2, "GetMembers: it's too old");
|
|
*xids = NULL;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Acquire the shared lock just long enough to grab the current counter
|
|
* values. We may need both nextMXact and nextOffset; see below.
|
|
*/
|
|
LWLockAcquire(MultiXactGenLock, LW_SHARED);
|
|
|
|
nextMXact = MultiXactState->nextMXact;
|
|
nextOffset = MultiXactState->nextOffset;
|
|
|
|
LWLockRelease(MultiXactGenLock);
|
|
|
|
if (!MultiXactIdPrecedes(multi, nextMXact))
|
|
{
|
|
debug_elog2(DEBUG2, "GetMembers: it's too new!");
|
|
*xids = NULL;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Find out the offset at which we need to start reading MultiXactMembers
|
|
* and the number of members in the multixact. We determine the latter
|
|
* as the difference between this multixact's starting offset and the
|
|
* next one's. However, there are some corner cases to worry about:
|
|
*
|
|
* 1. This multixact may be the latest one created, in which case there
|
|
* is no next one to look at. In this case the nextOffset value we just
|
|
* saved is the correct endpoint.
|
|
*
|
|
* 2. The next multixact may still be in process of being filled in:
|
|
* that is, another process may have done GetNewMultiXactId but not yet
|
|
* written the offset entry for that ID. In that scenario, it is
|
|
* guaranteed that the offset entry for that multixact exists (because
|
|
* GetNewMultiXactId won't release MultiXactGenLock until it does)
|
|
* but contains zero (because we are careful to pre-zero offset pages).
|
|
* Because GetNewMultiXactId will never return zero as the starting offset
|
|
* for a multixact, when we read zero as the next multixact's offset, we
|
|
* know we have this case. We sleep for a bit and try again.
|
|
*
|
|
* 3. Because GetNewMultiXactId increments offset zero to offset one
|
|
* to handle case #2, there is an ambiguity near the point of offset
|
|
* wraparound. If we see next multixact's offset is one, is that our
|
|
* multixact's actual endpoint, or did it end at zero with a subsequent
|
|
* increment? We handle this using the knowledge that if the zero'th
|
|
* member slot wasn't filled, it'll contain zero, and zero isn't a valid
|
|
* transaction ID so it can't be a multixact member. Therefore, if we
|
|
* read a zero from the members array, just ignore it.
|
|
*
|
|
* This is all pretty messy, but the mess occurs only in infrequent corner
|
|
* cases, so it seems better than holding the MultiXactGenLock for a long
|
|
* time on every multixact creation.
|
|
*/
|
|
retry:
|
|
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
|
|
|
|
pageno = MultiXactIdToOffsetPage(multi);
|
|
entryno = MultiXactIdToOffsetEntry(multi);
|
|
|
|
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
|
|
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
|
|
offptr += entryno;
|
|
offset = *offptr;
|
|
|
|
Assert(offset != 0);
|
|
|
|
/*
|
|
* Use the same increment rule as GetNewMultiXactId(), that is, don't
|
|
* handle wraparound explicitly until needed.
|
|
*/
|
|
tmpMXact = multi + 1;
|
|
|
|
if (nextMXact == tmpMXact)
|
|
{
|
|
/* Corner case 1: there is no next multixact */
|
|
length = nextOffset - offset;
|
|
}
|
|
else
|
|
{
|
|
MultiXactOffset nextMXOffset;
|
|
|
|
/* handle wraparound if needed */
|
|
if (tmpMXact < FirstMultiXactId)
|
|
tmpMXact = FirstMultiXactId;
|
|
|
|
prev_pageno = pageno;
|
|
|
|
pageno = MultiXactIdToOffsetPage(tmpMXact);
|
|
entryno = MultiXactIdToOffsetEntry(tmpMXact);
|
|
|
|
if (pageno != prev_pageno)
|
|
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, tmpMXact);
|
|
|
|
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
|
|
offptr += entryno;
|
|
nextMXOffset = *offptr;
|
|
|
|
if (nextMXOffset == 0)
|
|
{
|
|
/* Corner case 2: next multixact is still being filled in */
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
pg_usleep(1000L);
|
|
goto retry;
|
|
}
|
|
|
|
length = nextMXOffset - offset;
|
|
}
|
|
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
|
|
ptr = (TransactionId *) palloc(length * sizeof(TransactionId));
|
|
*xids = ptr;
|
|
|
|
/* Now get the members themselves. */
|
|
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
|
|
|
|
truelength = 0;
|
|
prev_pageno = -1;
|
|
for (i = 0; i < length; i++, offset++)
|
|
{
|
|
TransactionId *xactptr;
|
|
|
|
pageno = MXOffsetToMemberPage(offset);
|
|
entryno = MXOffsetToMemberEntry(offset);
|
|
|
|
if (pageno != prev_pageno)
|
|
{
|
|
slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, multi);
|
|
prev_pageno = pageno;
|
|
}
|
|
|
|
xactptr = (TransactionId *)
|
|
MultiXactMemberCtl->shared->page_buffer[slotno];
|
|
xactptr += entryno;
|
|
|
|
if (!TransactionIdIsValid(*xactptr))
|
|
{
|
|
/* Corner case 3: we must be looking at unused slot zero */
|
|
Assert(offset == 0);
|
|
continue;
|
|
}
|
|
|
|
ptr[truelength++] = *xactptr;
|
|
}
|
|
|
|
LWLockRelease(MultiXactMemberControlLock);
|
|
|
|
/*
|
|
* Copy the result into the local cache.
|
|
*/
|
|
mXactCachePut(multi, truelength, ptr);
|
|
|
|
debug_elog3(DEBUG2, "GetMembers: no cache for %s",
|
|
mxid_to_string(multi, truelength, ptr));
|
|
return truelength;
|
|
}
|
|
|
|
/*
|
|
* mXactCacheGetBySet
|
|
* returns a MultiXactId from the cache based on the set of
|
|
* TransactionIds that compose it, or InvalidMultiXactId if
|
|
* none matches.
|
|
*
|
|
* This is helpful, for example, if two transactions want to lock a huge
|
|
* table. By using the cache, the second will use the same MultiXactId
|
|
* for the majority of tuples, thus keeping MultiXactId usage low (saving
|
|
* both I/O and wraparound issues).
|
|
*
|
|
* NB: the passed xids[] array will be sorted in-place.
|
|
*/
|
|
static MultiXactId
|
|
mXactCacheGetBySet(int nxids, TransactionId *xids)
|
|
{
|
|
mXactCacheEnt *entry;
|
|
|
|
debug_elog3(DEBUG2, "CacheGet: looking for %s",
|
|
mxid_to_string(InvalidMultiXactId, nxids, xids));
|
|
|
|
/* sort the array so comparison is easy */
|
|
qsort(xids, nxids, sizeof(TransactionId), xidComparator);
|
|
|
|
for (entry = MXactCache; entry != NULL; entry = entry->next)
|
|
{
|
|
if (entry->nxids != nxids)
|
|
continue;
|
|
|
|
/* We assume the cache entries are sorted */
|
|
if (memcmp(xids, entry->xids, nxids * sizeof(TransactionId)) == 0)
|
|
{
|
|
debug_elog3(DEBUG2, "CacheGet: found %u", entry->multi);
|
|
return entry->multi;
|
|
}
|
|
}
|
|
|
|
debug_elog2(DEBUG2, "CacheGet: not found :-(");
|
|
return InvalidMultiXactId;
|
|
}
|
|
|
|
/*
|
|
* mXactCacheGetById
|
|
* returns the composing TransactionId set from the cache for a
|
|
* given MultiXactId, if present.
|
|
*
|
|
* If successful, *xids is set to the address of a palloc'd copy of the
|
|
* TransactionId set. Return value is number of members, or -1 on failure.
|
|
*/
|
|
static int
|
|
mXactCacheGetById(MultiXactId multi, TransactionId **xids)
|
|
{
|
|
mXactCacheEnt *entry;
|
|
|
|
debug_elog3(DEBUG2, "CacheGet: looking for %u", multi);
|
|
|
|
for (entry = MXactCache; entry != NULL; entry = entry->next)
|
|
{
|
|
if (entry->multi == multi)
|
|
{
|
|
TransactionId *ptr;
|
|
Size size;
|
|
|
|
size = sizeof(TransactionId) * entry->nxids;
|
|
ptr = (TransactionId *) palloc(size);
|
|
*xids = ptr;
|
|
|
|
memcpy(ptr, entry->xids, size);
|
|
|
|
debug_elog3(DEBUG2, "CacheGet: found %s",
|
|
mxid_to_string(multi, entry->nxids, entry->xids));
|
|
return entry->nxids;
|
|
}
|
|
}
|
|
|
|
debug_elog2(DEBUG2, "CacheGet: not found");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* mXactCachePut
|
|
* Add a new MultiXactId and its composing set into the local cache.
|
|
*/
|
|
static void
|
|
mXactCachePut(MultiXactId multi, int nxids, TransactionId *xids)
|
|
{
|
|
mXactCacheEnt *entry;
|
|
|
|
debug_elog3(DEBUG2, "CachePut: storing %s",
|
|
mxid_to_string(multi, nxids, xids));
|
|
|
|
if (MXactContext == NULL)
|
|
{
|
|
/* The cache only lives as long as the current transaction */
|
|
debug_elog2(DEBUG2, "CachePut: initializing memory context");
|
|
MXactContext = AllocSetContextCreate(TopTransactionContext,
|
|
"MultiXact Cache Context",
|
|
ALLOCSET_SMALL_MINSIZE,
|
|
ALLOCSET_SMALL_INITSIZE,
|
|
ALLOCSET_SMALL_MAXSIZE);
|
|
}
|
|
|
|
entry = (mXactCacheEnt *)
|
|
MemoryContextAlloc(MXactContext,
|
|
offsetof(mXactCacheEnt, xids) +
|
|
nxids * sizeof(TransactionId));
|
|
|
|
entry->multi = multi;
|
|
entry->nxids = nxids;
|
|
memcpy(entry->xids, xids, nxids * sizeof(TransactionId));
|
|
|
|
/* mXactCacheGetBySet assumes the entries are sorted, so sort them */
|
|
qsort(entry->xids, nxids, sizeof(TransactionId), xidComparator);
|
|
|
|
entry->next = MXactCache;
|
|
MXactCache = entry;
|
|
}
|
|
|
|
/*
|
|
* xidComparator
|
|
* qsort comparison function for XIDs
|
|
*
|
|
* We don't need to use wraparound comparison for XIDs, and indeed must
|
|
* not do so since that does not respect the triangle inequality! Any
|
|
* old sort order will do.
|
|
*/
|
|
static int
|
|
xidComparator(const void *arg1, const void *arg2)
|
|
{
|
|
TransactionId xid1 = *(const TransactionId *) arg1;
|
|
TransactionId xid2 = *(const TransactionId *) arg2;
|
|
|
|
if (xid1 > xid2)
|
|
return 1;
|
|
if (xid1 < xid2)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef MULTIXACT_DEBUG
|
|
static char *
|
|
mxid_to_string(MultiXactId multi, int nxids, TransactionId *xids)
|
|
{
|
|
char *str = palloc(15 * (nxids + 1) + 4);
|
|
int i;
|
|
|
|
snprintf(str, 47, "%u %d[%u", multi, nxids, xids[0]);
|
|
|
|
for (i = 1; i < nxids; i++)
|
|
snprintf(str + strlen(str), 17, ", %u", xids[i]);
|
|
|
|
strcat(str, "]");
|
|
return str;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* AtEOXact_MultiXact
|
|
* Handle transaction end for MultiXact
|
|
*
|
|
* This is called at top transaction commit or abort (we don't care which).
|
|
*/
|
|
void
|
|
AtEOXact_MultiXact(void)
|
|
{
|
|
/*
|
|
* Reset our OldestMemberMXactId and OldestVisibleMXactId values, both of
|
|
* which should only be valid while within a transaction.
|
|
*
|
|
* We assume that storing a MultiXactId is atomic and so we need not take
|
|
* MultiXactGenLock to do this.
|
|
*/
|
|
OldestMemberMXactId[MyBackendId] = InvalidMultiXactId;
|
|
OldestVisibleMXactId[MyBackendId] = InvalidMultiXactId;
|
|
|
|
/*
|
|
* Discard the local MultiXactId cache. Since MXactContext was created as
|
|
* a child of TopTransactionContext, we needn't delete it explicitly.
|
|
*/
|
|
MXactContext = NULL;
|
|
MXactCache = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialization of shared memory for MultiXact. We use two SLRU areas,
|
|
* thus double memory. Also, reserve space for the shared MultiXactState
|
|
* struct and the per-backend MultiXactId arrays (two of those, too).
|
|
*/
|
|
Size
|
|
MultiXactShmemSize(void)
|
|
{
|
|
Size size;
|
|
|
|
#define SHARED_MULTIXACT_STATE_SIZE \
|
|
add_size(sizeof(MultiXactStateData), \
|
|
mul_size(sizeof(MultiXactId) * 2, MaxBackends))
|
|
|
|
size = SHARED_MULTIXACT_STATE_SIZE;
|
|
size = add_size(size, SimpleLruShmemSize());
|
|
size = add_size(size, SimpleLruShmemSize());
|
|
|
|
return size;
|
|
}
|
|
|
|
void
|
|
MultiXactShmemInit(void)
|
|
{
|
|
bool found;
|
|
|
|
debug_elog2(DEBUG2, "Shared Memory Init for MultiXact");
|
|
|
|
MultiXactOffsetCtl->PagePrecedes = MultiXactOffsetPagePrecedes;
|
|
MultiXactMemberCtl->PagePrecedes = MultiXactMemberPagePrecedes;
|
|
|
|
SimpleLruInit(MultiXactOffsetCtl, "MultiXactOffset Ctl",
|
|
MultiXactOffsetControlLock, "pg_multixact/offsets");
|
|
SimpleLruInit(MultiXactMemberCtl, "MultiXactMember Ctl",
|
|
MultiXactMemberControlLock, "pg_multixact/members");
|
|
|
|
/* Initialize our shared state struct */
|
|
MultiXactState = ShmemInitStruct("Shared MultiXact State",
|
|
SHARED_MULTIXACT_STATE_SIZE,
|
|
&found);
|
|
if (!IsUnderPostmaster)
|
|
{
|
|
Assert(!found);
|
|
|
|
/* Make sure we zero out the per-backend state */
|
|
MemSet(MultiXactState, 0, SHARED_MULTIXACT_STATE_SIZE);
|
|
}
|
|
else
|
|
Assert(found);
|
|
|
|
/*
|
|
* Set up array pointers. Note that perBackendXactIds[0] is wasted space
|
|
* since we only use indexes 1..MaxBackends in each array.
|
|
*/
|
|
OldestMemberMXactId = MultiXactState->perBackendXactIds;
|
|
OldestVisibleMXactId = OldestMemberMXactId + MaxBackends;
|
|
}
|
|
|
|
/*
|
|
* This func must be called ONCE on system install. It creates the initial
|
|
* MultiXact segments. (The MultiXacts directories are assumed to have been
|
|
* created by initdb, and MultiXactShmemInit must have been called already.)
|
|
*/
|
|
void
|
|
BootStrapMultiXact(void)
|
|
{
|
|
int slotno;
|
|
|
|
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
|
|
|
|
/* Create and zero the first page of the offsets log */
|
|
slotno = ZeroMultiXactOffsetPage(0, false);
|
|
|
|
/* Make sure it's written out */
|
|
SimpleLruWritePage(MultiXactOffsetCtl, slotno, NULL);
|
|
Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
|
|
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
|
|
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
|
|
|
|
/* Create and zero the first page of the members log */
|
|
slotno = ZeroMultiXactMemberPage(0, false);
|
|
|
|
/* Make sure it's written out */
|
|
SimpleLruWritePage(MultiXactMemberCtl, slotno, NULL);
|
|
Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
|
|
|
|
LWLockRelease(MultiXactMemberControlLock);
|
|
}
|
|
|
|
/*
|
|
* Initialize (or reinitialize) a page of MultiXactOffset to zeroes.
|
|
* If writeXlog is TRUE, also emit an XLOG record saying we did this.
|
|
*
|
|
* The page is not actually written, just set up in shared memory.
|
|
* The slot number of the new page is returned.
|
|
*
|
|
* Control lock must be held at entry, and will be held at exit.
|
|
*/
|
|
static int
|
|
ZeroMultiXactOffsetPage(int pageno, bool writeXlog)
|
|
{
|
|
int slotno;
|
|
|
|
slotno = SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
|
|
|
|
if (writeXlog)
|
|
WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_OFF_PAGE);
|
|
|
|
return slotno;
|
|
}
|
|
|
|
/*
|
|
* Ditto, for MultiXactMember
|
|
*/
|
|
static int
|
|
ZeroMultiXactMemberPage(int pageno, bool writeXlog)
|
|
{
|
|
int slotno;
|
|
|
|
slotno = SimpleLruZeroPage(MultiXactMemberCtl, pageno);
|
|
|
|
if (writeXlog)
|
|
WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_MEM_PAGE);
|
|
|
|
return slotno;
|
|
}
|
|
|
|
/*
|
|
* This must be called ONCE during postmaster or standalone-backend startup.
|
|
*
|
|
* StartupXLOG has already established nextMXact/nextOffset by calling
|
|
* MultiXactSetNextMXact and/or MultiXactAdvanceNextMXact. Note that we
|
|
* may already have replayed WAL data into the SLRU files.
|
|
*
|
|
* We don't need any locks here, really; the SLRU locks are taken
|
|
* only because slru.c expects to be called with locks held.
|
|
*/
|
|
void
|
|
StartupMultiXact(void)
|
|
{
|
|
MultiXactId multi = MultiXactState->nextMXact;
|
|
MultiXactOffset offset = MultiXactState->nextOffset;
|
|
int pageno;
|
|
int entryno;
|
|
|
|
/* Clean up offsets state */
|
|
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
|
|
|
|
/*
|
|
* Initialize our idea of the latest page number.
|
|
*/
|
|
pageno = MultiXactIdToOffsetPage(multi);
|
|
MultiXactOffsetCtl->shared->latest_page_number = pageno;
|
|
|
|
/*
|
|
* Zero out the remainder of the current offsets page. See notes in
|
|
* StartupCLOG() for motivation.
|
|
*/
|
|
entryno = MultiXactIdToOffsetEntry(multi);
|
|
if (entryno != 0)
|
|
{
|
|
int slotno;
|
|
MultiXactOffset *offptr;
|
|
|
|
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
|
|
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
|
|
offptr += entryno;
|
|
|
|
MemSet(offptr, 0, BLCKSZ - (entryno * sizeof(MultiXactOffset)));
|
|
|
|
MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
|
|
}
|
|
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
|
|
/* And the same for members */
|
|
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
|
|
|
|
/*
|
|
* Initialize our idea of the latest page number.
|
|
*/
|
|
pageno = MXOffsetToMemberPage(offset);
|
|
MultiXactMemberCtl->shared->latest_page_number = pageno;
|
|
|
|
/*
|
|
* Zero out the remainder of the current members page. See notes in
|
|
* StartupCLOG() for motivation.
|
|
*/
|
|
entryno = MXOffsetToMemberEntry(offset);
|
|
if (entryno != 0)
|
|
{
|
|
int slotno;
|
|
TransactionId *xidptr;
|
|
|
|
slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, offset);
|
|
xidptr = (TransactionId *) MultiXactMemberCtl->shared->page_buffer[slotno];
|
|
xidptr += entryno;
|
|
|
|
MemSet(xidptr, 0, BLCKSZ - (entryno * sizeof(TransactionId)));
|
|
|
|
MultiXactMemberCtl->shared->page_dirty[slotno] = true;
|
|
}
|
|
|
|
LWLockRelease(MultiXactMemberControlLock);
|
|
|
|
/*
|
|
* Initialize lastTruncationPoint to invalid, ensuring that the first
|
|
* checkpoint will try to do truncation.
|
|
*/
|
|
MultiXactState->lastTruncationPoint = InvalidMultiXactId;
|
|
}
|
|
|
|
/*
|
|
* This must be called ONCE during postmaster or standalone-backend shutdown
|
|
*/
|
|
void
|
|
ShutdownMultiXact(void)
|
|
{
|
|
/* Flush dirty MultiXact pages to disk */
|
|
SimpleLruFlush(MultiXactOffsetCtl, false);
|
|
SimpleLruFlush(MultiXactMemberCtl, false);
|
|
}
|
|
|
|
/*
|
|
* Get the next MultiXactId and offset to save in a checkpoint record
|
|
*/
|
|
void
|
|
MultiXactGetCheckptMulti(bool is_shutdown,
|
|
MultiXactId *nextMulti,
|
|
MultiXactOffset *nextMultiOffset)
|
|
{
|
|
LWLockAcquire(MultiXactGenLock, LW_SHARED);
|
|
|
|
*nextMulti = MultiXactState->nextMXact;
|
|
*nextMultiOffset = MultiXactState->nextOffset;
|
|
|
|
LWLockRelease(MultiXactGenLock);
|
|
|
|
debug_elog4(DEBUG2, "MultiXact: checkpoint is nextMulti %u, nextOffset %u",
|
|
*nextMulti, *nextMultiOffset);
|
|
}
|
|
|
|
/*
|
|
* Perform a checkpoint --- either during shutdown, or on-the-fly
|
|
*/
|
|
void
|
|
CheckPointMultiXact(void)
|
|
{
|
|
/* Flush dirty MultiXact pages to disk */
|
|
SimpleLruFlush(MultiXactOffsetCtl, true);
|
|
SimpleLruFlush(MultiXactMemberCtl, true);
|
|
|
|
/*
|
|
* Truncate the SLRU files. This could be done at any time, but
|
|
* checkpoint seems a reasonable place for it.
|
|
*/
|
|
TruncateMultiXact();
|
|
}
|
|
|
|
/*
|
|
* Set the next-to-be-assigned MultiXactId and offset
|
|
*
|
|
* This is used when we can determine the correct next ID/offset exactly
|
|
* from a checkpoint record. We need no locking since it is only called
|
|
* during bootstrap and XLog replay.
|
|
*/
|
|
void
|
|
MultiXactSetNextMXact(MultiXactId nextMulti,
|
|
MultiXactOffset nextMultiOffset)
|
|
{
|
|
debug_elog4(DEBUG2, "MultiXact: setting next multi to %u offset %u",
|
|
nextMulti, nextMultiOffset);
|
|
MultiXactState->nextMXact = nextMulti;
|
|
MultiXactState->nextOffset = nextMultiOffset;
|
|
}
|
|
|
|
/*
|
|
* Ensure the next-to-be-assigned MultiXactId is at least minMulti,
|
|
* and similarly nextOffset is at least minMultiOffset
|
|
*
|
|
* This is used when we can determine minimum safe values from an XLog
|
|
* record (either an on-line checkpoint or an mxact creation log entry).
|
|
* We need no locking since it is only called during XLog replay.
|
|
*/
|
|
void
|
|
MultiXactAdvanceNextMXact(MultiXactId minMulti,
|
|
MultiXactOffset minMultiOffset)
|
|
{
|
|
if (MultiXactIdPrecedes(MultiXactState->nextMXact, minMulti))
|
|
{
|
|
debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", minMulti);
|
|
MultiXactState->nextMXact = minMulti;
|
|
}
|
|
if (MultiXactOffsetPrecedes(MultiXactState->nextOffset, minMultiOffset))
|
|
{
|
|
debug_elog3(DEBUG2, "MultiXact: setting next offset to %u",
|
|
minMultiOffset);
|
|
MultiXactState->nextOffset = minMultiOffset;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure that MultiXactOffset has room for a newly-allocated MultiXactId.
|
|
*
|
|
* NB: this is called while holding MultiXactGenLock. We want it to be very
|
|
* fast most of the time; even when it's not so fast, no actual I/O need
|
|
* happen unless we're forced to write out a dirty log or xlog page to make
|
|
* room in shared memory.
|
|
*/
|
|
static void
|
|
ExtendMultiXactOffset(MultiXactId multi)
|
|
{
|
|
int pageno;
|
|
|
|
/*
|
|
* No work except at first MultiXactId of a page. But beware: just after
|
|
* wraparound, the first MultiXactId of page zero is FirstMultiXactId.
|
|
*/
|
|
if (MultiXactIdToOffsetEntry(multi) != 0 &&
|
|
multi != FirstMultiXactId)
|
|
return;
|
|
|
|
pageno = MultiXactIdToOffsetPage(multi);
|
|
|
|
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
|
|
|
|
/* Zero the page and make an XLOG entry about it */
|
|
ZeroMultiXactOffsetPage(pageno, true);
|
|
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
}
|
|
|
|
/*
|
|
* Make sure that MultiXactMember has room for the members of a newly-
|
|
* allocated MultiXactId.
|
|
*
|
|
* Like the above routine, this is called while holding MultiXactGenLock;
|
|
* same comments apply.
|
|
*/
|
|
static void
|
|
ExtendMultiXactMember(MultiXactOffset offset, int nmembers)
|
|
{
|
|
/*
|
|
* It's possible that the members span more than one page of the members
|
|
* file, so we loop to ensure we consider each page. The coding is not
|
|
* optimal if the members span several pages, but that seems unusual
|
|
* enough to not worry much about.
|
|
*/
|
|
while (nmembers > 0)
|
|
{
|
|
int entryno;
|
|
|
|
/*
|
|
* Only zero when at first entry of a page.
|
|
*/
|
|
entryno = MXOffsetToMemberEntry(offset);
|
|
if (entryno == 0)
|
|
{
|
|
int pageno;
|
|
|
|
pageno = MXOffsetToMemberPage(offset);
|
|
|
|
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
|
|
|
|
/* Zero the page and make an XLOG entry about it */
|
|
ZeroMultiXactMemberPage(pageno, true);
|
|
|
|
LWLockRelease(MultiXactMemberControlLock);
|
|
}
|
|
|
|
/* Advance to next page (OK if nmembers goes negative) */
|
|
offset += (MULTIXACT_MEMBERS_PER_PAGE - entryno);
|
|
nmembers -= (MULTIXACT_MEMBERS_PER_PAGE - entryno);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove all MultiXactOffset and MultiXactMember segments before the oldest
|
|
* ones still of interest.
|
|
*
|
|
* This is called only during checkpoints. We assume no more than one
|
|
* backend does this at a time.
|
|
*
|
|
* XXX do we have any issues with needing to checkpoint here?
|
|
*/
|
|
static void
|
|
TruncateMultiXact(void)
|
|
{
|
|
MultiXactId nextMXact;
|
|
MultiXactOffset nextOffset;
|
|
MultiXactId oldestMXact;
|
|
MultiXactOffset oldestOffset;
|
|
int cutoffPage;
|
|
int i;
|
|
|
|
/*
|
|
* First, compute where we can safely truncate. Per notes above, this is
|
|
* the oldest valid value among all the OldestMemberMXactId[] and
|
|
* OldestVisibleMXactId[] entries, or nextMXact if none are valid.
|
|
*/
|
|
LWLockAcquire(MultiXactGenLock, LW_SHARED);
|
|
|
|
/*
|
|
* We have to beware of the possibility that nextMXact is in the
|
|
* wrapped-around state. We don't fix the counter itself here, but we
|
|
* must be sure to use a valid value in our calculation.
|
|
*/
|
|
nextMXact = MultiXactState->nextMXact;
|
|
if (nextMXact < FirstMultiXactId)
|
|
nextMXact = FirstMultiXactId;
|
|
|
|
oldestMXact = nextMXact;
|
|
for (i = 1; i <= MaxBackends; i++)
|
|
{
|
|
MultiXactId thisoldest;
|
|
|
|
thisoldest = OldestMemberMXactId[i];
|
|
if (MultiXactIdIsValid(thisoldest) &&
|
|
MultiXactIdPrecedes(thisoldest, oldestMXact))
|
|
oldestMXact = thisoldest;
|
|
thisoldest = OldestVisibleMXactId[i];
|
|
if (MultiXactIdIsValid(thisoldest) &&
|
|
MultiXactIdPrecedes(thisoldest, oldestMXact))
|
|
oldestMXact = thisoldest;
|
|
}
|
|
|
|
/* Save the current nextOffset too */
|
|
nextOffset = MultiXactState->nextOffset;
|
|
|
|
LWLockRelease(MultiXactGenLock);
|
|
|
|
debug_elog3(DEBUG2, "MultiXact: truncation point = %u", oldestMXact);
|
|
|
|
/*
|
|
* If we already truncated at this point, do nothing. This saves time
|
|
* when no MultiXacts are getting used, which is probably not uncommon.
|
|
*/
|
|
if (MultiXactState->lastTruncationPoint == oldestMXact)
|
|
return;
|
|
|
|
/*
|
|
* We need to determine where to truncate MultiXactMember. If we found a
|
|
* valid oldest MultiXactId, read its starting offset; otherwise we use
|
|
* the nextOffset value we saved above.
|
|
*/
|
|
if (oldestMXact == nextMXact)
|
|
oldestOffset = nextOffset;
|
|
else
|
|
{
|
|
int pageno;
|
|
int slotno;
|
|
int entryno;
|
|
MultiXactOffset *offptr;
|
|
|
|
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
|
|
|
|
pageno = MultiXactIdToOffsetPage(oldestMXact);
|
|
entryno = MultiXactIdToOffsetEntry(oldestMXact);
|
|
|
|
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, oldestMXact);
|
|
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
|
|
offptr += entryno;
|
|
oldestOffset = *offptr;
|
|
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
}
|
|
|
|
/*
|
|
* The cutoff point is the start of the segment containing oldestMXact. We
|
|
* pass the *page* containing oldestMXact to SimpleLruTruncate.
|
|
*/
|
|
cutoffPage = MultiXactIdToOffsetPage(oldestMXact);
|
|
|
|
SimpleLruTruncate(MultiXactOffsetCtl, cutoffPage);
|
|
|
|
/*
|
|
* Also truncate MultiXactMember at the previously determined offset.
|
|
*/
|
|
cutoffPage = MXOffsetToMemberPage(oldestOffset);
|
|
|
|
SimpleLruTruncate(MultiXactMemberCtl, cutoffPage);
|
|
|
|
/*
|
|
* Set the last known truncation point. We don't need a lock for this
|
|
* since only one backend does checkpoints at a time.
|
|
*/
|
|
MultiXactState->lastTruncationPoint = oldestMXact;
|
|
}
|
|
|
|
/*
|
|
* Decide which of two MultiXactOffset page numbers is "older" for truncation
|
|
* purposes.
|
|
*
|
|
* We need to use comparison of MultiXactId here in order to do the right
|
|
* thing with wraparound. However, if we are asked about page number zero, we
|
|
* don't want to hand InvalidMultiXactId to MultiXactIdPrecedes: it'll get
|
|
* weird. So, offset both multis by FirstMultiXactId to avoid that.
|
|
* (Actually, the current implementation doesn't do anything weird with
|
|
* InvalidMultiXactId, but there's no harm in leaving this code like this.)
|
|
*/
|
|
static bool
|
|
MultiXactOffsetPagePrecedes(int page1, int page2)
|
|
{
|
|
MultiXactId multi1;
|
|
MultiXactId multi2;
|
|
|
|
multi1 = ((MultiXactId) page1) * MULTIXACT_OFFSETS_PER_PAGE;
|
|
multi1 += FirstMultiXactId;
|
|
multi2 = ((MultiXactId) page2) * MULTIXACT_OFFSETS_PER_PAGE;
|
|
multi2 += FirstMultiXactId;
|
|
|
|
return MultiXactIdPrecedes(multi1, multi2);
|
|
}
|
|
|
|
/*
|
|
* Decide which of two MultiXactMember page numbers is "older" for truncation
|
|
* purposes. There is no "invalid offset number" so use the numbers verbatim.
|
|
*/
|
|
static bool
|
|
MultiXactMemberPagePrecedes(int page1, int page2)
|
|
{
|
|
MultiXactOffset offset1;
|
|
MultiXactOffset offset2;
|
|
|
|
offset1 = ((MultiXactOffset) page1) * MULTIXACT_MEMBERS_PER_PAGE;
|
|
offset2 = ((MultiXactOffset) page2) * MULTIXACT_MEMBERS_PER_PAGE;
|
|
|
|
return MultiXactOffsetPrecedes(offset1, offset2);
|
|
}
|
|
|
|
/*
|
|
* Decide which of two MultiXactIds is earlier.
|
|
*
|
|
* XXX do we need to do something special for InvalidMultiXactId?
|
|
* (Doesn't look like it.)
|
|
*/
|
|
static bool
|
|
MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
|
|
{
|
|
int32 diff = (int32) (multi1 - multi2);
|
|
|
|
return (diff < 0);
|
|
}
|
|
|
|
/*
|
|
* Decide which of two offsets is earlier.
|
|
*/
|
|
static bool
|
|
MultiXactOffsetPrecedes(MultiXactOffset offset1, MultiXactOffset offset2)
|
|
{
|
|
int32 diff = (int32) (offset1 - offset2);
|
|
|
|
return (diff < 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Write an xlog record reflecting the zeroing of either a MEMBERs or
|
|
* OFFSETs page (info shows which)
|
|
*
|
|
* Note: xlog record is marked as outside transaction control, since we
|
|
* want it to be redone whether the invoking transaction commits or not.
|
|
*/
|
|
static void
|
|
WriteMZeroPageXlogRec(int pageno, uint8 info)
|
|
{
|
|
XLogRecData rdata;
|
|
|
|
rdata.data = (char *) (&pageno);
|
|
rdata.len = sizeof(int);
|
|
rdata.buffer = InvalidBuffer;
|
|
rdata.next = NULL;
|
|
(void) XLogInsert(RM_MULTIXACT_ID, info | XLOG_NO_TRAN, &rdata);
|
|
}
|
|
|
|
/*
|
|
* MULTIXACT resource manager's routines
|
|
*/
|
|
void
|
|
multixact_redo(XLogRecPtr lsn, XLogRecord *record)
|
|
{
|
|
uint8 info = record->xl_info & ~XLR_INFO_MASK;
|
|
|
|
if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
|
|
{
|
|
int pageno;
|
|
int slotno;
|
|
|
|
memcpy(&pageno, XLogRecGetData(record), sizeof(int));
|
|
|
|
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
|
|
|
|
slotno = ZeroMultiXactOffsetPage(pageno, false);
|
|
SimpleLruWritePage(MultiXactOffsetCtl, slotno, NULL);
|
|
Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
|
|
|
|
LWLockRelease(MultiXactOffsetControlLock);
|
|
}
|
|
else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
|
|
{
|
|
int pageno;
|
|
int slotno;
|
|
|
|
memcpy(&pageno, XLogRecGetData(record), sizeof(int));
|
|
|
|
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
|
|
|
|
slotno = ZeroMultiXactMemberPage(pageno, false);
|
|
SimpleLruWritePage(MultiXactMemberCtl, slotno, NULL);
|
|
Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
|
|
|
|
LWLockRelease(MultiXactMemberControlLock);
|
|
}
|
|
else if (info == XLOG_MULTIXACT_CREATE_ID)
|
|
{
|
|
xl_multixact_create *xlrec = (xl_multixact_create *) XLogRecGetData(record);
|
|
TransactionId *xids = xlrec->xids;
|
|
TransactionId max_xid;
|
|
int i;
|
|
|
|
/* Store the data back into the SLRU files */
|
|
RecordNewMultiXact(xlrec->mid, xlrec->moff, xlrec->nxids, xids);
|
|
|
|
/* Make sure nextMXact/nextOffset are beyond what this record has */
|
|
MultiXactAdvanceNextMXact(xlrec->mid + 1, xlrec->moff + xlrec->nxids);
|
|
|
|
/*
|
|
* Make sure nextXid is beyond any XID mentioned in the record. This
|
|
* should be unnecessary, since any XID found here ought to have other
|
|
* evidence in the XLOG, but let's be safe.
|
|
*/
|
|
max_xid = record->xl_xid;
|
|
for (i = 0; i < xlrec->nxids; i++)
|
|
{
|
|
if (TransactionIdPrecedes(max_xid, xids[i]))
|
|
max_xid = xids[i];
|
|
}
|
|
if (TransactionIdFollowsOrEquals(max_xid,
|
|
ShmemVariableCache->nextXid))
|
|
{
|
|
ShmemVariableCache->nextXid = max_xid;
|
|
TransactionIdAdvance(ShmemVariableCache->nextXid);
|
|
}
|
|
}
|
|
else
|
|
elog(PANIC, "multixact_redo: unknown op code %u", info);
|
|
}
|
|
|
|
void
|
|
multixact_desc(char *buf, uint8 xl_info, char *rec)
|
|
{
|
|
uint8 info = xl_info & ~XLR_INFO_MASK;
|
|
|
|
if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
|
|
{
|
|
int pageno;
|
|
|
|
memcpy(&pageno, rec, sizeof(int));
|
|
sprintf(buf + strlen(buf), "zero offsets page: %d", pageno);
|
|
}
|
|
else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
|
|
{
|
|
int pageno;
|
|
|
|
memcpy(&pageno, rec, sizeof(int));
|
|
sprintf(buf + strlen(buf), "zero members page: %d", pageno);
|
|
}
|
|
else if (info == XLOG_MULTIXACT_CREATE_ID)
|
|
{
|
|
xl_multixact_create *xlrec = (xl_multixact_create *) rec;
|
|
int i;
|
|
|
|
sprintf(buf + strlen(buf), "create multixact %u offset %u:",
|
|
xlrec->mid, xlrec->moff);
|
|
for (i = 0; i < xlrec->nxids; i++)
|
|
sprintf(buf + strlen(buf), " %u", xlrec->xids[i]);
|
|
}
|
|
else
|
|
strcat(buf, "UNKNOWN");
|
|
}
|