When considering Incremental Sort below a Gather Merge, we need to be
a bit more careful when matching pathkeys to EC members. It's not enough
to find a member whose Vars are all in the current relation's target;
volatile expressions in particular need to be contained in the target,
otherwise it's too early to use the pathkey.
Reported-by: Jaime Casanova
Author: James Coleman
Reviewed-by: Tomas Vondra
Backpatch-through: 13, where the incremental sort code was added
Discussion: https://postgr.es/m/CAJGNTeNaxpXgBVcRhJX%2B2vSbq%2BF2kJqGBcvompmpvXb7pq%2BoFA%40mail.gmail.com
get_foreign_key_join_selectivity() looks for join clauses that equate
the two sides of the FK constraint. However, if we have a query like
"WHERE fktab.a = pktab.a and fktab.a = 1", it won't find any such join
clause, because equivclass.c replaces the given clauses with "fktab.a
= 1 and pktab.a = 1", which can be enforced at the scan level, leaving
nothing to be done for column "a" at the join level.
We can fix that expectation without much trouble, but then a new problem
arises: applying the foreign-key-based selectivity rule produces a
rowcount underestimate, because we're effectively double-counting the
selectivity of the "fktab.a = 1" clause. So we have to cancel that
selectivity out of the estimate.
To fix, refactor process_implied_equality() so that it can pass back the
new RestrictInfo to its callers in equivclass.c, allowing the generated
"fktab.a = 1" clause to be saved in the EquivalenceClass's ec_derives
list. Then it's not much trouble to dig out the relevant RestrictInfo
when we need to adjust an FK selectivity estimate. (While at it, we
can also remove the expensive use of initialize_mergeclause_eclasses()
to set up the new RestrictInfo's left_ec and right_ec pointers.
The equivclass.c code can set those basically for free.)
This seems like clearly a bug fix, but I'm hesitant to back-patch it,
first because there's some API/ABI risk for extensions and second because
we're usually loath to destabilize plan choices in stable branches.
Per report from Sigrid Ehrenreich.
Discussion: https://postgr.es/m/1019549.1603770457@sss.pgh.pa.us
Discussion: https://postgr.es/m/AM6PR02MB5287A0ADD936C1FA80973E72AB190@AM6PR02MB5287.eurprd02.prod.outlook.com
There is a handful of places where we called list_delete_ptr() to remove
some element from a List. In many of these places we know, or with very
little additional effort know the index of the ListCell that we need to
remove.
Here we change all of those places to instead either use one of;
list_delete_nth_cell(), foreach_delete_current() or list_delete_last().
Each of these saves from having to iterate over the list to search for the
element to remove by its pointer value.
There are some small performance gains to be had by doing this, but in the
general case, none of these lists are likely to be very large, so the
lookup was probably never that expensive anyway. However, some of the
calls are in fairly hot code paths, e.g process_equivalence(). So any
small gains there are useful.
Author: Zhijie Hou and David Rowley
Discussion: https://postgr.es/m/b3517353ec7c4f87aa560678fbb1034b@G08CNEXMBPEKD05.g08.fujitsu.local
This patch prevents crashes or wrong plans when partition-wise joins
are considered during GEQO planning, as a consequence of the
EquivalenceClass data structures becoming corrupt after a GEQO
context reset.
A remaining problem is that successive GEQO cycles will make multiple
copies of the required EC members, since add_child_join_rel_equivalences
has no idea that such members might exist already. For now we'll just
live with that. The lack of field complaints of crashes suggests that
this is a mighty little-used situation.
Back-patch to v12 where this code was introduced.
Discussion: https://postgr.es/m/1683100.1601860653@sss.pgh.pa.us
get_eclass_for_sort_expr() computes expr_relids and nullable_relids
early on, even though they won't be needed unless we make a new
EquivalenceClass, which we often don't. Aside from the probably-minor
inefficiency, there's a memory management problem: these bitmapsets will
be built in the caller's context, leading to dangling pointers if that
is shorter-lived than root->planner_cxt. This would be a live bug if
get_eclass_for_sort_expr() could be called with create_it = true during
GEQO join planning. So far as I can find, the core code never does
that, but it's hard to be sure that no extensions do, especially since
the comments make it clear that that's supposed to be a supported case.
Fix by not computing these values until we've switched into planner_cxt
to build the new EquivalenceClass.
generate_join_implied_equalities() uses inner_rel->relids to look up
relevant eclasses, but it ought to be using nominal_inner_relids.
This is presently harmless because a child RelOptInfo will always have
exactly the same eclass_indexes as its topmost parent; but that might
not be true forever, and anyway it makes the code confusing.
The first of these is old (introduced by me in f3b3b8d5b), so back-patch
to all supported branches. The second only dates to v13, but we might
as well back-patch it to keep the code looking similar across branches.
Discussion: https://postgr.es/m/1508010.1601832581@sss.pgh.pa.us
Commit a477bfc1d fixed eval_const_expressions() to ensure that it
didn't generate unnecessary RelabelType nodes, but I failed to notice
that some other places in the planner had the same issue. Really
noplace in the planner should be using plain makeRelabelType(), for
fear of generating expressions that should be equal() to semantically
equivalent trees, but aren't.
An example is that because canonicalize_ec_expression() failed
to be careful about this, we could end up with an equivalence class
containing both a plain Const, and a Const-with-RelabelType
representing exactly the same value. So far as I can tell this led to
no visible misbehavior, but we did waste a bunch of cycles generating
and evaluating "Const = Const-with-RelabelType" to prove such entries
are redundant.
Hence, move the support function added by a477bfc1d to where it can
be more generally useful, and use it in the places where planner code
previously used makeRelabelType.
Back-patch to v12, like the previous patch. While I have no concrete
evidence of any real misbehavior here, it's certainly possible that
I overlooked a case where equivalent expressions that aren't equal()
could cause a user-visible problem. In any case carrying extra
RelabelType nodes through planning to execution isn't very desirable.
Discussion: https://postgr.es/m/1311836.1597781384@sss.pgh.pa.us
Commit d2d8a229bc introduced Incremental Sort, but it was considered
only in create_ordered_paths() as an alternative to regular Sort. There
are many other places that require sorted input and might benefit from
considering Incremental Sort too.
This patch modifies a number of those places, but not all. The concern
is that just adding Incremental Sort to any place that already adds
Sort may increase the number of paths considered, negatively affecting
planning time, without any benefit. So we've taken a more conservative
approach, based on analysis of which places do affect a set of queries
that did seem practical. This means some less common queries may not
benefit from Incremental Sort yet.
Author: Tomas Vondra
Reviewed-by: James Coleman
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
Commit d25ea0127 got rid of what I thought were entirely unnecessary
derived child expressions in EquivalenceClasses for EC members that
mention multiple baserels. But it turns out that some of the child
expressions that code created are necessary for partitionwise joins,
else we fail to find matching pathkeys for Sort nodes. (This happens
only for certain shapes of the resulting plan; it may be that
partitionwise aggregation is also necessary to show the failure,
though I'm not sure of that.)
Reverting that commit entirely would be quite painful performance-wise
for large partition sets. So instead, add code that explicitly
generates child expressions that match only partitionwise child join
rels we have actually generated.
Per report from Justin Pryzby. (Amit Langote noticed the problem
earlier, though it's not clear if he recognized then that it could
result in a planner error, not merely failure to exploit partitionwise
join, in the code as-committed.) Back-patch to v12 where commit
d25ea0127 came in.
Amit Langote, with lots of kibitzing from me
Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
Discussion: https://postgr.es/m/20191011143703.GN10470@telsasoft.com
3373c7155 changed how we determine EquivalenceClasses for relations and
added an Assert to ensure all relations mentioned in each EC's ec_relids
was a RELOPT_BASEREL. However, the join removal code may remove a LEFT
JOIN and since it does not clean up EC members belonging to the removed
relations it can leave RELOPT_DEADREL rels in ec_relids.
Fix this by adjusting the Assert to allow RELOPT_DEADREL rels too.
Reported-by: sqlsmith via Andreas Seltenreich
Discussion: https://postgr.es/m/87y30r8sls.fsf@ansel.ydns.eu
Previously in order to determine which ECs a relation had members in, we
had to loop over all ECs stored in PlannerInfo's eq_classes and check if
ec_relids mentioned the relation. For the most part, this was fine, as
generally, unless queries were fairly complex, the overhead of performing
the lookup would have not been that significant. However, when queries
contained large numbers of joins and ECs, the overhead to find the set of
classes matching a given set of relations could become a significant
portion of the overall planning effort.
Here we allow a much more efficient method to access the ECs which match a
given relation or set of relations. A new Bitmapset field in RelOptInfo
now exists to store the indexes into PlannerInfo's eq_classes list which
each relation is mentioned in. This allows very fast lookups to find all
ECs belonging to a single relation. When we need to lookup ECs belonging
to a given pair of relations, we can simply bitwise-AND the Bitmapsets from
each relation and use the result to perform the lookup.
We also take the opportunity to write a new implementation of
generate_join_implied_equalities which makes use of the new indexes.
generate_join_implied_equalities_for_ecs must remain as is as it can be
given a custom list of ECs, which we can't easily determine the indexes of.
This was originally intended to fix the performance penalty of looking up
foreign keys matching a join condition which was introduced by 100340e2d.
However, we're speeding up much more than just that here.
Author: David Rowley, Tom Lane
Reviewed-by: Tom Lane, Tomas Vondra
Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link. We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells. That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.
In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links. Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header. (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)
Of course this is not without downsides. The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.
For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state. We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value. (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.
The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext(). The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell(). However, we no longer
need a previous-cell pointer to delete a list cell efficiently. Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)
There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents. To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen. This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).
There are two notable API differences from the previous code:
* lnext() now requires the List's header pointer in addition to the
current cell's address.
* list_delete_cell() no longer requires a previous-cell argument.
These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.
Programmers should be aware of these significant performance changes:
* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.
* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.) Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long. Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.
* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index. These have the
data-movement penalty explained above, but there's no search penalty.
* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists. The second argument is
now declared "const List *" to reflect that it isn't changed.
This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests. As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.
Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit. Code using those should have been gone a dozen years ago.
Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.
Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
If an EquivalenceClass member expression includes variables from
multiple appendrels, then instead of producing one substituted
expression per child relation as intended, we'd create additional
child expressions for combinations of children of different appendrels.
This happened because the child expressions generated while considering
the first appendrel were taken as sources during substitution of the
second appendrel, and so on. The extra expressions are useless, and are
harmless unless there are too many of them --- but if you have several
appendrels with a thousand or so members each, it gets bad fast.
To fix, consider only original (non-em_is_child) EC members as candidates
to be expanded. This requires the ability to substitute directly from a
top parent relation's Vars to those of an indirect descendant relation,
but we already have that in adjust_appendrel_attrs_multilevel().
Per bug #15847 from Feike Steenbergen. This is a longstanding misbehavior,
but it's only worth worrying about when there are more appendrel children
than we've historically considered wise to use. So I'm not going to take
the risk of back-patching this.
Discussion: https://postgr.es/m/15847-ea3734094bf8ae61@postgresql.org
Check ec_relids before bothering to iterate through the EC members.
On a perhaps extreme, but still real-world, query in which
match_eclasses_to_foreign_key_col() accounts for the bulk of the
planner's runtime, this saves nearly 40% of the runtime. It's a bit
of a stopgap fix, but it's simple enough to be back-patched to 9.6
where this code came in; so let's do that.
David Rowley
Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes. This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.
We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition. This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator. To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo(). For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.
Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original. This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.
Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.
This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state. I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.
Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h. This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.
The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.
This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match. There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
This commit moves expand_inherited_tables and underlings from
optimizer/prep/prepunionc.c to optimizer/utils/inherit.c.
Also, all of the AppendRelInfo-based expression manipulation routines
are moved to optimizer/utils/appendinfo.c.
No functional code changes. One exception is the introduction of
make_append_rel_info, but that's still just moving around code.
Also, stop including <limits.h> in prepunion.c, which no longer needs
it since 3fc6e2d7f5b6. I (Álvaro) noticed this because Amit was copying
that to inherit.c, which likewise doesn't need it.
Author: Amit Langote
Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
canonicalize_ec_expression() is supposed to agree with coerce_type() as to
whether a RelabelType should be inserted to make a subexpression be valid
input for the operators of a given opclass. However, it did the wrong
thing with named-composite-type inputs to record_eq(): it put in a
RelabelType to RECORDOID, which the parser doesn't. In some cases this was
harmless because all code paths involving a particular equivalence class
did the same thing, but in other cases this would result in failing to
recognize a composite-type expression as being a member of an equivalence
class that it actually is a member of. The most obvious bad effect was to
fail to recognize that an index on a composite column could provide the
sort order needed for a mergejoin on that column, as reported by Teodor
Sigaev. I think there might be other, subtler, cases that result in
misoptimization. It also seems possible that an unwanted RelabelType
would sometimes get into an emitted plan --- but because record_eq and
friends don't examine the declared type of their input expressions, that
would not create any visible problems.
To fix, just treat RECORDOID as if it were a polymorphic type, which in
some sense it is. We might want to consider formalizing that a bit more
someday, but for the moment this seems to be the only place where an
IsPolymorphicType() test ought to include RECORDOID as well.
This has been broken for a long time, so back-patch to all supported
branches.
Discussion: https://postgr.es/m/a6b22369-e3bf-4d49-f59d-0c41d3551e81@sigaev.ru
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
If the operator is a strict btree equality operator, and X isn't volatile,
then the clause must yield true for any non-null value of X, or null if X
is null. At top level of a WHERE clause, we can ignore the distinction
between false and null results, so it's valid to simplify the clause to
"X IS NOT NULL". This is a useful improvement mainly because we'll get
a far better selectivity estimate in most cases.
Because such cases seldom arise in well-written queries, it is unappetizing
to expend a lot of planner cycles looking for them ... but it turns out
that there's a place we can shoehorn this in practically for free, because
equivclass.c already has to detect and reject candidate equivalences of the
form X = X. That doesn't catch every place that it would be valid to
simplify to X IS NOT NULL, but it catches the typical case. Working harder
doesn't seem justified.
Patch by me, reviewed by Petr Jelinek
Discussion: https://postgr.es/m/CAMjNa7cC4X9YR-vAJS-jSYCajhRDvJQnN7m2sLH1wLh-_Z2bsw@mail.gmail.com
Currently, child relations are always base relations, so when we
translate parent relids to child relids, we only need to translate
a singler relid. However, the proposed partition-wise join feature
will create child joins, which will mean we need to translate a set
of parent relids to the corresponding child relids. This is
preliminary refactoring to make that possible.
Ashutosh Bapat. Review and testing of the larger patch set of which
this is a part by Amit Langote, Rajkumar Raghuwanshi, Rafia Sabih,
Thomas Munro, Dilip Kumar, and me. Some adjustments, mostly
cosmetic, by me.
Discussion: http://postgr.es/m/CA+TgmobQK80vtXjAsPZWWXd7c8u13G86gmuLupN+uUJjA+i4nA@mail.gmail.com
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
Currently, the only type of child relation is an "other member rel",
which is the child of a baserel, but in the future joins and even
upper relations may have child rels. To facilitate that, introduce
macros that test to test for particular RelOptKind values, and use
them in various places where they help to clarify the sense of a test.
(For example, a test may allow RELOPT_OTHER_MEMBER_REL either because
it intends to allow child rels, or because it intends to allow simple
rels.)
Also, remove find_childrel_top_parent, which will not work for a
child rel that is not a baserel. Instead, add a new RelOptInfo
member top_parent_relids to track the same kind of information in a
more generic manner.
Ashutosh Bapat, slightly tweaked by me. Review and testing of the
patch set from which this was taken by Rajkumar Raghuwanshi and Rafia
Sabih.
Discussion: http://postgr.es/m/CA+TgmoagTnF2yqR3PT2rv=om=wJiZ4-A+ATwdnriTGku1CLYxA@mail.gmail.com
In an RLS query, we must ensure that security filter quals are evaluated
before ordinary query quals, in case the latter contain "leaky" functions
that could expose the contents of sensitive rows. The original
implementation of RLS planning ensured this by pushing the scan of a
secured table into a sub-query that it marked as a security-barrier view.
Unfortunately this results in very inefficient plans in many cases, because
the sub-query cannot be flattened and gets planned independently of the
rest of the query.
To fix, drop the use of sub-queries to enforce RLS qual order, and instead
mark each qual (RestrictInfo) with a security_level field establishing its
priority for evaluation. Quals must be evaluated in security_level order,
except that "leakproof" quals can be allowed to go ahead of quals of lower
security_level, if it's helpful to do so. This has to be enforced within
the ordering of any one list of quals to be evaluated at a table scan node,
and we also have to ensure that quals are not chosen for early evaluation
(i.e., use as an index qual or TID scan qual) if they're not allowed to go
ahead of other quals at the scan node.
This is sufficient to fix the problem for RLS quals, since we only support
RLS policies on simple tables and thus RLS quals will always exist at the
table scan level only. Eventually these qual ordering rules should be
enforced for join quals as well, which would permit improving planning for
explicit security-barrier views; but that's a task for another patch.
Note that FDWs would need to be aware of these rules --- and not, for
example, send an insecure qual for remote execution --- but since we do
not yet allow RLS policies on foreign tables, the case doesn't arise.
This will need to be addressed before we can allow such policies.
Patch by me, reviewed by Stephen Frost and Dean Rasheed.
Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
This patch provides a new implementation of the logic added by commit
137805f89 and later removed by 77ba61080. It differs from the original
primarily in expending much less effort per joinrel in large queries,
which it accomplishes by doing most of the matching work once per query not
once per joinrel. Hopefully, it's also less buggy and better commented.
The never-documented enable_fkey_estimates GUC remains gone.
There remains work to be done to make the selectivity estimates account
for nulls in FK referencing columns; but that was true of the original
patch as well. We may be able to address this point later in beta.
In the meantime, any error should be in the direction of overestimating
rather than underestimating joinrel sizes, which seems like the direction
we want to err in.
Tomas Vondra and Tom Lane
Discussion: <31041.1465069446@sss.pgh.pa.us>
Given a three-or-more-way equivalence class, such as X.Y = Y.Y = Z.Z,
it was possible for the planner to omit one of the quals needed to
enforce that all members of the equivalence class are actually equal.
This only happened in the case of a parameterized join node for two
of the relations, that is a plan tree like
Nested Loop
-> Scan X
-> Nested Loop
-> Scan Y
-> Scan Z
Filter: Z.Z = X.X
The eclass machinery normally expects to apply X.X = Y.Y when those
two relations are joined, but in this shape of plan tree they aren't
joined until the top node --- and, if the lower nested loop is marked
as parameterized by X, the top node will assume that the relevant eclass
condition(s) got pushed down into the lower node. On the other hand,
the scan of Z assumes that it's only responsible for constraining Z.Z
to match any one of the other eclass members. So one or another of
the required quals sometimes fell between the cracks, depending on
whether consideration of the eclass in get_joinrel_parampathinfo()
for the lower nested loop chanced to generate X.X = Y.Y or X.X = Z.Z
as the appropriate constraint there. If it generated the latter,
it'd erroneously suppose that the Z scan would take care of matters.
To fix, force X.X = Y.Y to be generated and applied at that join node
when this case occurs.
This is *extremely* hard to hit in practice, because various planner
behaviors conspire to mask the problem; starting with the fact that the
planner doesn't really like to generate a parameterized plan of the
above shape. (It might have been impossible to hit it before we
tweaked things to allow this plan shape for star-schema cases.) Many
thanks to Alexander Kirkouski for submitting a reproducible test case.
The bug can be demonstrated in all branches back to 9.2 where parameterized
paths were introduced, so back-patch that far.
All along, this function should have treated WindowFuncs in a manner
similar to Aggrefs, ie with an option whether or not to recurse into them.
By not considering the case, it was always recursing, which is OK for most
callers (although I suspect that the case in prepare_sort_from_pathkeys
might represent a bug). But now we need return-without-recursing behavior
as well. There are also more than a few callers that should never see a
WindowFunc, and now we'll get some error checking on that.
In commit 1d97c19a0f748e94 and later c1d9579dd8bf3c92, we extended
pull_var_clause's API by adding enum-type arguments. That's sort of a pain
to maintain, though, because it means every time we add a new behavior we
must touch every last one of the call sites, even if there's a reasonable
default behavior that most of them could use. Let's switch over to using a
bitmask of flags, instead; that seems more maintainable and might save a
nanosecond or two as well. This commit changes no behavior in itself,
though I'm going to follow it up with one that does add a new behavior.
In passing, remove flatten_tlist(), which has not been used since 9.1
and would otherwise need the same API changes.
Removing these enums means that optimizer/tlist.h no longer needs to
depend on optimizer/var.h. Changing that caused a number of C files to
need addition of #include "optimizer/var.h" (probably we can thank old
runs of pgrminclude for that); but on balance it seems like a good change
anyway.
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
Formerly, this function would always return "true" for an appendrel child
relation, because it would think that the appendrel parent was a potential
join target for the child. In principle that should only lead to some
inefficiency in planning, but fuzz testing by Andreas Seltenreich disclosed
that it could lead to "could not find pathkey item to sort" planner errors
in odd corner cases. Specifically, we would think that all columns of a
child table's multicolumn index were interesting pathkeys, causing us to
generate a MergeAppend path that sorts by all the columns. However, if any
of those columns weren't actually used above the level of the appendrel,
they would not get added to that rel's targetlist, which would result in
being unable to resolve the MergeAppend's sort keys against its targetlist
during createplan.c.
Backpatch to 9.3. In older versions, columns of an appendrel get added
to its targetlist even if they're not mentioned above the scan level,
so that the failure doesn't occur. It might be worth back-patching this
fix to older versions anyway, but I'll refrain for the moment.
For upcoming BRIN opclasses, it's convenient to have strategy numbers
defined in a single place. Since there's nothing appropriate, create
it. The StrategyNumber typedef now lives there, as well as existing
strategy numbers for B-trees (from skey.h) and R-tree-and-friends (from
gist.h). skey.h is forced to include stratnum.h because of the
StrategyNumber typedef, but gist.h is not; extensions that currently
rely on gist.h for rtree strategy numbers might need to add a new
A few .c files can stop including skey.h and/or gist.h, which is a nice
side benefit.
Per discussion:
https://www.postgresql.org/message-id/20150514232132.GZ2523@alvh.no-ip.org
Authored by Emre Hasegeli and Álvaro.
(It's not clear to me why bootscanner.l has any #include lines at all.)
This patch adds a function that replaces a bms_membership() test followed
by a bms_singleton_member() call, performing both the test and the
extraction of a singleton set's member in one scan of the bitmapset.
The performance advantage over the old way is probably minimal in current
usage, but it seems worthwhile on notational grounds anyway.
David Rowley
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.
Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.
Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels. The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family. That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them. So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.
The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced. In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members. (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong. A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
The original coding of EquivalenceClasses didn't foresee that appendrel
child relations might themselves be appendrels; but this is possible for
example when a UNION ALL subquery scans a table with inheritance children.
The oversight led to failure to optimize ordering-related issues very well
for the grandchild tables. After some false starts involving explicitly
flattening the appendrel representation, we found that this could be fixed
easily by removing a few implicit assumptions about appendrel parent rels
not being children themselves.
Kyotaro Horiguchi and Tom Lane, reviewed by Noah Misch
Bug #8591 from Claudio Freire demonstrates that get_eclass_for_sort_expr
must be able to compute valid em_nullable_relids for any new equivalence
class members it creates. I'd worried about this in the commit message
for db9f0e1d9a4a0842c814a464cdc9758c3f20b96c, but claimed that it wasn't a
problem because multi-member ECs should already exist when it runs. That
is transparently wrong, though, because this function is also called by
initialize_mergeclause_eclasses, which runs during deconstruct_jointree.
The example given in the bug report (which the new regression test item
is based upon) fails because the COALESCE() expression is first seen by
initialize_mergeclause_eclasses rather than process_equivalence.
Fixing this requires passing the appropriate nullable_relids set to
get_eclass_for_sort_expr, and it requires new code to compute that set
for top-level expressions such as ORDER BY, GROUP BY, etc. We store
the top-level nullable_relids in a new field in PlannerInfo to avoid
computing it many times. In the back branches, I've added the new
field at the end of the struct to minimize ABI breakage for planner
plugins. There doesn't seem to be a good alternative to changing
get_eclass_for_sort_expr's API signature, though. There probably aren't
any third-party extensions calling that function directly; moreover,
if there are, they probably need to think about what to pass for
nullable_relids anyway.
Back-patch to 9.2, like the previous patch in this area.
This patch gets rid of the concept of, and infrastructure for,
non-canonical PathKeys; we now only ever create canonical pathkey lists.
The need for non-canonical pathkeys came from the desire to have
grouping_planner initialize query_pathkeys and related pathkey lists before
calling query_planner. However, since query_planner didn't actually *do*
anything with those lists before they'd been made canonical, we can get rid
of the whole mess by just not creating the lists at all until the point
where we formerly canonicalized them.
There are several ways in which we could implement that without making
query_planner itself deal with grouping/sorting features (which are
supposed to be the province of grouping_planner). I chose to add a
callback function to query_planner's API; other alternatives would have
required adding more fields to PlannerInfo, which while not bad in itself
would create an ABI break for planner-related plugins in the 9.2 release
series. This still breaks ABI for anything that calls query_planner
directly, but it seems somewhat unlikely that there are any such plugins.
I had originally conceived of this change as merely a step on the way to
fixing bug #8049 from Teun Hoogendoorn; but it turns out that this fixes
that bug all by itself, as per the added regression test. The reason is
that now get_eclass_for_sort_expr is adding the ORDER BY expression at the
end of EquivalenceClass creation not the start, and so anything that is in
a multi-member EquivalenceClass has already been created with correct
em_nullable_relids. I am suspicious that there are related scenarios in
which we still need to teach get_eclass_for_sort_expr to compute correct
nullable_relids, but am not eager to risk destabilizing either 9.2 or 9.3
to fix bugs that are only hypothetical. So for the moment, do this and
stop here.
Back-patch to 9.2 but not to earlier branches, since they don't exhibit
this bug for lack of join-clause-movement logic that depends on
em_nullable_relids being correct. (We might have to revisit that choice
if any related bugs turn up.) In 9.2, don't change the signature of
make_pathkeys_for_sortclauses nor remove canonicalize_pathkeys, so as
not to risk more plugin breakage than we have to.
I wasn't going to ship this without having at least some example of how
to do that. This version isn't terribly bright; in particular it won't
consider any combinations of multiple join clauses. Given the cost of
executing a remote EXPLAIN, I'm not sure we want to be very aggressive
about doing that, anyway.
In support of this, refactor generate_implied_equalities_for_indexcol
so that it can be used to extract equivalence clauses that aren't
necessarily tied to an index.
In a query such as "SELECT DISTINCT min(x) FROM tab", the DISTINCT is
pretty useless (there being only one output row), but nonetheless it
shouldn't fail. But it could fail if "tab" is an inheritance parent,
because planagg.c's code for fixing up equivalence classes after making the
index-optimized MIN/MAX transformation wasn't prepared to find child-table
versions of the aggregate expression. The least ugly fix seems to be
to add an option to mutate_eclass_expressions() to skip child-table
equivalence class members, which aren't used anymore at this stage of
planning so it's not really necessary to fix them. Since child members
are ignored in many cases already, it seems plausible for
mutate_eclass_expressions() to have an option to ignore them too.
Per bug #7703 from Maxim Boguk.
Back-patch to 9.1. Although the same code exists before that, it cannot
encounter child-table aggregates AFAICS, because the index optimization
transformation cannot succeed on inheritance trees before 9.1 (for lack
of MergeAppend).