node emits only those vars that are actually needed above it in the
plan tree. (There were comments in the code suggesting that this was
done at some point in the dim past, but for a long time we have just
made join nodes emit everything that either input emitted.) Aside from
being marginally more efficient, this fixes the problem noted by Peter
Eisentraut where a join above an IN-implemented-as-join might fail,
because the subplan targetlist constructed in the latter case didn't
meet the expectation of including everything.
Along the way, fix some places that were O(N^2) in the targetlist
length. This is not all the trouble spots for wide queries by any
means, but it's a step forward.
of an index can now be a computed expression instead of a simple variable.
Restrictions on expressions are the same as for predicates (only immutable
functions, no sub-selects). This fixes problems recently introduced with
inlining SQL functions, because the inlining transformation is applied to
both expression trees so the planner can still match them up. Along the
way, improve efficiency of handling index predicates (both predicates and
index expressions are now cached by the relcache) and fix 7.3 oversight
that didn't record dependencies of predicate expressions.
dropped. The simplest fix for INSERT/UPDATE cases turns out to be for
preptlist.c to insert NULLs of a known-good type (I used INT4) rather
than making them match the deleted column's type. Since the representation
of NULL is actually datatype-independent, this should work fine.
I also re-reverted the patch to disable the use_physical_tlist optimization
in the presence of dropped columns. It still doesn't look worth the
trouble to be smarter, if there are no other bugs to fix.
Added a regression test to catch future problems in this area.
where the table contains dropped columns. If the columns are dropped,
then their types may be gone as well, which causes ExecTypeFromTL() to
fail if the dropped columns appear in a plan node's tlist. This could
be worked around but I don't think the optimization is valuable enough
to be worth the trouble.
rid of the assumption that sizeof(Oid)==sizeof(int). This is one small
step towards someday supporting 8-byte OIDs. For the moment, it doesn't
do much except get rid of a lot of unsightly casts.
nodes where it's not really necessary. In many cases where the scan node
is not the topmost plan node (eg, joins, aggregation), it's possible to
just return the table tuple directly instead of generating an intermediate
projection tuple. In preliminary testing, this reduced the CPU time
needed for 'SELECT COUNT(*) FROM foo' by about 10%.
passed to join selectivity estimators. Make use of this in eqjoinsel
to derive non-bogus selectivity for IN clauses. Further tweaking of
cost estimation for IN.
initdb forced because of pg_proc.h changes.
joinclauses is determined accurately for each join. Formerly, the code only
considered joinclauses that used all of the rels from the outer side of the
join; thus for example
FROM (a CROSS JOIN b) JOIN c ON (c.f1 = a.x AND c.f2 = b.y)
could not exploit a two-column index on c(f1,f2), since neither of the
qual clauses would be in the joininfo list it looked in. The new code does
this correctly, and also is able to eliminate redundant clauses, thus fixing
the problem noted 24-Oct-02 by Hans-Jürgen Schönig.
yesterday's proposal to pghackers. Also remove unnecessary parameters
to heap_beginscan, heap_rescan. I modified pg_proc.h to reflect the
new numbers of parameters for the AM interface routines, but did not
force an initdb because nothing actually looks at those fields.
Improve 'pg_internal.init' relcache entry preload mechanism so that it is
safe to use for all system catalogs, and arrange to preload a realistic
set of system-catalog entries instead of only the three nailed-in-cache
indexes that were formerly loaded this way. Fix mechanism for deleting
out-of-date pg_internal.init files: this must be synchronized with transaction
commit, not just done at random times within transactions. Drive it off
relcache invalidation mechanism so that no special-case tests are needed.
Cache additional information in relcache entries for indexes (their pg_index
tuples and index-operator OIDs) to eliminate repeated lookups. Also cache
index opclass info at the per-opclass level to avoid repeated lookups during
relcache load.
Generalize 'systable scan' utilities originally developed by Hiroshi,
move them into genam.c, use in a number of places where there was formerly
ugly code for choosing either heap or index scan. In particular this allows
simplification of the logic that prevents infinite recursion between syscache
and relcache during startup: we can easily switch to heapscans in relcache.c
when and where needed to avoid recursion, so IndexScanOK becomes simpler and
does not need any expensive initialization.
Eliminate useless opening of a heapscan data structure while doing an indexscan
(this saves an mdnblocks call and thus at least one kernel call).
pgsql-hackers. pg_opclass now has a row for each opclass supported by each
index AM, not a row for each opclass name. This allows pg_opclass to show
directly whether an AM supports an opclass, and furthermore makes it possible
to store additional information about an opclass that might be AM-dependent.
pg_opclass and pg_amop now store "lossy" and "haskeytype" information that we
previously expected the user to remember to provide in CREATE INDEX commands.
Lossiness is no longer an index-level property, but is associated with the
use of a particular operator in a particular index opclass.
Along the way, IndexSupportInitialize now uses the syscaches to retrieve
pg_amop and pg_amproc entries. I find this reduces backend launch time by
about ten percent, at the cost of a couple more special cases in catcache.c's
IndexScanOK.
Initial work by Oleg Bartunov and Teodor Sigaev, further hacking by Tom Lane.
initdb forced.
per previous discussion on pghackers. Most of the duplicate code in
different AMs' ambuild routines has been moved out to a common routine
in index.c; this means that all index types now do the right things about
inserting recently-dead tuples, etc. (I also removed support for EXTEND
INDEX in the ambuild routines, since that's about to go away anyway, and
it cluttered the code a lot.) The retail indextuple deletion routines have
been replaced by a "bulk delete" routine in which the indexscan is inside
the access method. I haven't pushed this change as far as it should go yet,
but it should allow considerable simplification of the internal bookkeeping
for deletions. Also, add flag columns to pg_am to eliminate various
hardcoded tests on AM OIDs, and remove unused pg_am columns.
Fix rtree and gist index types to not attempt to store NULLs; before this,
gist usually crashed, while rtree managed not to crash but computed wacko
bounding boxes for NULL entries (which might have had something to do with
the performance problems we've heard about occasionally).
Add AtEOXact routines to hash, rtree, and gist, all of which have static
state that needs to be reset after an error. We discovered this need long
ago for btree, but missed the other guys.
Oh, one more thing: concurrent VACUUM is now the default.
create_index_paths are not immediately discarded, but are available for
subsequent planner work. This allows avoiding redundant syscache lookups
in several places. Change interface to operator selectivity estimation
procedures to allow faster and more flexible estimation.
Initdb forced due to change of pg_proc entries for selectivity functions!
a separate statement (though it can still be invoked as part of VACUUM, too).
pg_statistic redesigned to be more flexible about what statistics are
stored. ANALYZE now collects a list of several of the most common values,
not just one, plus a histogram (not just the min and max values). Random
sampling is used to make the process reasonably fast even on very large
tables. The number of values and histogram bins collected is now
user-settable via an ALTER TABLE command.
There is more still to do; the new stats are not being used everywhere
they could be in the planner. But the remaining changes for this project
should be localized, and the behavior is already better than before.
A not-very-related change is that sorting now makes use of btree comparison
routines if it can find one, rather than invoking '<' twice.
maintained for each cache entry. A cache entry will not be freed until
the matching ReleaseSysCache call has been executed. This eliminates
worries about cache entries getting dropped while still in use. See
my posting to pg-hackers of even date for more info.
(Don't forget that an alias is required.) Views reimplemented as expanding
to subselect-in-FROM. Grouping, aggregates, DISTINCT in views actually
work now (he says optimistically). No UNION support in subselects/views
yet, but I have some ideas about that. Rule-related permissions checking
moved out of rewriter and into executor.
INITDB REQUIRED!
discussion of 5/19/00). pg_index is now searched for indexes of a
relation using an indexscan. Moreover, this is done once and cached
in the relcache entry for the relation, in the form of a list of OIDs
for the indexes. This list is used by the parser and executor to drive
lookups in the pg_index syscache when they want to know the properties
of the indexes. Net result: index information will be fully cached
for repetitive operations such as inserts.
key call sites are changed, but most called functions are still oldstyle.
An exception is that the PL managers are updated (so, for example, NULL
handling now behaves as expected in plperl and plpgsql functions).
NOTE initdb is forced due to added column in pg_proc.
selectivity functions and make the r-tree operators use them. The
estimation functions themselves are just stubs, unfortunately, but
perhaps someday someone will make them compute realistic estimates.
Change pg_am so that the optimizer can reliably tell the difference
between ordered and unordered indexes --- before it would think that
an r-tree index can be scanned in '<<' order, which is not right AFAIK.
Repair broken negator links for network_sup and related ops.
Initdb forced. This might be my last initdb force for 7.0 ... hope so
anyway ...
accesses versus sequential accesses, a (very crude) estimate of the
effects of caching on random page accesses, and cost to evaluate WHERE-
clause expressions. Export critical parameters for this model as SET
variables. Also, create SET variables for the planner's enable flags
(enable_seqscan, enable_indexscan, etc) so that these can be controlled
more conveniently than via PGOPTIONS.
Planner now estimates both startup cost (cost before retrieving
first tuple) and total cost of each path, so it can optimize queries
with LIMIT on a reasonable basis by interpolating between these costs.
Same facility is a win for EXISTS(...) subqueries and some other cases.
Redesign pathkey representation to achieve a major speedup in planning
(I saw as much as 5X on a 10-way join); also minor changes in planner
to reduce memory consumption by recycling discarded Path nodes and
not constructing unnecessary lists.
Minor cleanups to display more-plausible costs in some cases in
EXPLAIN output.
Initdb forced by change in interface to index cost estimation
functions.
pghackers discussion of 5-Jan-2000. The amopselect and amopnpages
estimators are gone, and in their place is a per-AM amcostestimate
procedure (linked to from pg_am, not pg_amop).
Make all system indexes unique.
Make all cache loads use system indexes.
Rename *rel to *relid in inheritance tables.
Rename cache names to be clearer.
returns a list of RelOptInfos, eliminating the need for static state
in index_info. That static state was a direct cause of coredumps; if
anything decided to elog(ERROR) partway through an index_info search of
pg_index, the next query would try to close a scan pointer that was
pointing at no-longer-valid memory. Another example of the reasons to
avoid static state variables...
additional argument specifying the kind of lock to acquire/release (or
'NoLock' to do no lock processing). Ensure that all relations are locked
with some appropriate lock level before being examined --- this ensures
that relevant shared-inval messages have been processed and should prevent
problems caused by concurrent VACUUM. Fix several bugs having to do with
mismatched increment/decrement of relation ref count and mismatched
heap_open/close (which amounts to the same thing). A bogus ref count on
a relation doesn't matter much *unless* a SI Inval message happens to
arrive at the wrong time, which is probably why we got away with this
sloppiness for so long. Repair missing grab of AccessExclusiveLock in
DROP TABLE, ALTER/RENAME TABLE, etc, as noted by Hiroshi.
Recommend 'make clean all' after pulling this update; I modified the
Relation struct layout slightly.
Will post further discussion to pghackers list shortly.
was rejecting negative attnums as bogus, which of course they are not.
Add code to get_attdisbursion to produce a useful value for OID attribute,
since VACUUM does not store stats for system attributes.
Also, repair bug that's been in eqjoinsel for a long time: it was taking
the max of the two columns' disbursions, whereas it should use the min.