The purpose of this change is to eliminate the need for every caller
of SearchSysCache, SearchSysCacheCopy, SearchSysCacheExists,
GetSysCacheOid, and SearchSysCacheList to know the maximum number
of allowable keys for a syscache entry (currently 4). This will
make it far easier to increase the maximum number of keys in a
future release should we choose to do so, and it makes the code
shorter, too.
Design and review by Tom Lane.
This patch allows the frame to start from CURRENT ROW (in either RANGE or
ROWS mode), and it also adds support for ROWS n PRECEDING and ROWS n FOLLOWING
start and end points. (RANGE value PRECEDING/FOLLOWING isn't there yet ---
the grammar works, but that's all.)
Hitoshi Harada, reviewed by Pavel Stehule
parse analysis phase, rather than at execution time. This makes parameter
handling work the same as it does in ordinary plannable queries, and in
particular fixes the incompatibility that Pavel pointed out with plpgsql's
new handling of variable references. plancache.c gets a little bit
grottier, but the alternatives seem worse.
non-Var sort/group expressions using ressortgroupref labels instead of
depending entirely on equal()-ity of the upper node's tlist expressions
to the lower node's. This avoids emitting the wrong outputs in cases
where there are textually identical volatile sort/group expressions,
as for example
select distinct random(),random() from generate_series(1,10);
Per report from Andrew Gierth.
Backpatch to 8.4. Arguably this is wrong all the way back, but the only known
case where there's an observable problem is when using hash aggregation to
implement DISTINCT, which is new as of 8.4. So for the moment I'll refrain
from backpatching further.
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
are named in the UPDATE's SET list.
Note: the schema of pg_trigger has not actually changed; we've just started
to use a column that was there all along. catversion bumped anyway so that
this commit is included in the history of potentially interesting changes
to system catalog contents.
Itagaki Takahiro
execMain.c and into a new plan node type LockRows. Like the recent change
to put table updating into a ModifyTable plan node, this increases planning
flexibility by allowing the operations to occur below the top level of the
plan tree. It's necessary in any case to restore the previous behavior of
having FOR UPDATE locking occur before ModifyTable does.
This partially refactors EvalPlanQual to allow multiple rows-under-test
to be inserted into the EPQ machinery before starting an EPQ test query.
That isn't sufficient to fix EPQ's general bogosity in the face of plans
that return multiple rows per test row, though. Since this patch is
mostly about getting some plan node infrastructure in place and not about
fixing ten-year-old bugs, I will leave EPQ improvements for another day.
Another behavioral change that we could now think about is doing FOR UPDATE
before LIMIT, but that too seems like it should be treated as a followon
patch.
They are now handled by a new plan node type called ModifyTable, which is
placed at the top of the plan tree. In itself this change doesn't do much,
except perhaps make the handling of RETURNING lists and inherited UPDATEs a
tad less klugy. But it is necessary preparation for the intended extension of
allowing RETURNING queries inside WITH.
Marko Tiikkaja
that represent some expression that we desire to compute below the top level
of the plan, and then let that value "bubble up" as though it were a plain
Var (ie, a column value).
The immediate application is to allow sub-selects to be flattened even when
they are below an outer join and have non-nullable output expressions.
Formerly we couldn't flatten because such an expression wouldn't properly
go to NULL when evaluated above the outer join. Now, we wrap it in a
PlaceHolderVar and arrange for the actual evaluation to occur below the outer
join. When the resulting Var bubbles up through the join, it will be set to
NULL if necessary, yielding the correct results. This fixes a planner
limitation that's existed since 7.1.
In future we might want to use this mechanism to re-introduce some form of
Hellerstein's "expensive functions" optimization, ie place the evaluation of
an expensive function at the most suitable point in the plan tree.
There are some unimplemented aspects: recursive queries must use UNION ALL
(should allow UNION too), and we don't have SEARCH or CYCLE clauses.
These might or might not get done for 8.4, but even without them it's a
pretty useful feature.
There are also a couple of small loose ends and definitional quibbles,
which I'll send a memo about to pgsql-hackers shortly. But let's land
the patch now so we can get on with other development.
Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
when user-defined functions used in a plan are modified. Also invalidate
plans when schemas, operators, or operator classes are modified; but for these
cases we just invalidate everything rather than tracking exact dependencies,
since these types of objects seldom change in a production database.
Tom Lane; loosely based on a patch by Martin Pihlak.
into nodes/nodeFuncs, so as to reduce wanton cross-subsystem #includes inside
the backend. There's probably more that should be done along this line,
but this is a start anyway.
that it depends on for replan-forcing purposes. We need to consider plain OID
constants too, because eval_const_expressions folds a RelabelType atop a Const
to just a Const. This change could result in OID values that aren't really
for tables getting added to the dependency list, but the worst-case
consequence would be occasional useless replans. Per report from Gabriele
Messineo.
where rtoffset == 0. In that case there is no need to change Var nodes,
and since filling in unset opfuncid fields is always safe, scribbling on the
input tree to that extent is not objectionable. This brings the cost of this
operation back down to what it was in 8.2 for simple queries. Per
investigation of performance gripe from Guillaume Smet.
a relation as a reason to invalidate a plan when the relation changes. This
handles scenarios such as dropping/recreating a sequence that is referenced by
nextval('seq') in a cached plan. Rather than teach plancache.c all about
digging through plan trees to find regclass Consts, we charge the planner's
setrefs.c with making a list of the relation OIDs on which each plan depends.
That way the list can be built cheaply during a plan tree traversal that has
to happen anyway. Per bug #3662 and subsequent discussion.
Along the way, allow FOR UPDATE in non-WITH-HOLD cursors; there may once
have been a reason to disallow that, but it seems to work now, and it's
really rather necessary if you want to select a row via a cursor and then
update it in a concurrent-safe fashion.
Original patch by Arul Shaji, rather heavily editorialized by Tom Lane.
drill down into subplan targetlists to print the referent expression for an
OUTER or INNER var in an upper plan node. Hence, make it do that always, and
banish the old hack of showing "?columnN?" when things got too complicated.
Along the way, fix an EXPLAIN bug I introduced by suppressing subqueries from
execution-time range tables: get_name_for_var_field() assumed it could look at
rte->subquery to find out the real type of a RECORD var. That doesn't work
anymore, but instead we can look at the input plan of the SubqueryScan plan
node.
and quals have varno OUTER, rather than zero, to indicate a reference to
an output of their lefttree subplan. This is consistent with the way
that every other upper-level node type does it, and allows some simplifications
in setrefs.c and EXPLAIN.
useless substructure for its RangeTblEntry nodes. (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)
Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now. It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals. That's been a constant source of bugs, and it's finally gone.
There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
plan nodes, so that the executor does not need to get these items from
the range table at runtime. This will avoid needing to include these
fields in the compact range table I'm expecting to make the executor use.
be checked at plan levels below the top; namely, we have to allow for Result
nodes inserted just above a nestloop inner indexscan. Should think about
using the general Param mechanism to pass down outer-relation variables, but
for the moment we need a back-patchable solution. Per report from Phil Frost.
columns procost and prorows, to allow simple user adjustment of the estimated
cost of a function call, as well as control of the estimated number of rows
returned by a set-returning function. We might eventually wish to extend this
to allow function-specific estimation routines, but there seems to be
consensus that we should try a simple constant estimate first. In particular
this provides a relatively simple way to control the order in which different
WHERE clauses are applied in a plan node, which is a Good Thing in view of the
fact that the recent EquivalenceClass planner rewrite made that much less
predictable than before.
trivial if it contains either Vars referencing the corresponding subplan
columns, or Consts equaling the corresponding subplan columns. This
lets the planner eliminate the SubqueryScan in some cases generated by
generate_setop_tlist().
plpgsql support to come later. Along the way, convert execMain's
SELECT INTO support into a DestReceiver, in order to eliminate some ugly
special cases.
Jonah Harris and Tom Lane
(e.g. "INSERT ... VALUES (...), (...), ...") and elsewhere as allowed
by the spec. (e.g. similar to a FROM clause subselect). initdb required.
Joe Conway and Tom Lane.
relations: fix the executor so that we can have an Append plan on the
inside of a nestloop and still pass down outer index keys to index scans
within the Append, then generate such plans as if they were regular
inner indexscans. This avoids the need to evaluate the outer relation
multiple times.
"ctid IN (list)" will still work after we convert IN to ScalarArrayOpExpr.
Make some minor efficiency improvements while at it, such as ensuring that
multiple TIDs are fetched in physical heap order. And fix EXPLAIN so that
it shows what's really going on for a TID scan.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
from a finished plan tree. We have to copy the output column names
(resname fields) from the SubqueryScan down to its child plan node;
else, if this is the topmost level of the plan, the wrong column names
will be delivered to the client. Per bug #2017 reported by Jolly Chen.
when there are extra resjunk columns in the child node. I found some
additional cases involving Append nodes that weren't handled by the
prior patch, and it's not clear how to fix them in the same way without
breaking inheritance cases. So the prudent path seems to be to narrow
the scope of the optimization.
has to recopy the input plan node's targetlist if it removes a
SubqueryScan node just below the non-projecting node. For simplicity
I made it recopy always. Per bug report from Allan Wang and Michael Fuhr.
to copy the whole plan tree before invoking adjust_plan_varnos(); else
if there is any multiply-linked substructure, the latter might increment
some Var's varno twice. Previously there were some retail copyObject
calls inside adjust_plan_varnos, but it seems a lot safer to just dup the
whole tree first. Also, set_inner_join_references was trying to avoid
work by not recursing if a BitmapHeapScan's bitmapqualorig contained no
outer references; which was OK at the time the code was written, I think,
but now that create_bitmap_scan_plan removes duplicate clauses from
bitmapqualorig it is possible for that field to be NULL while outer
references still remain in the qpqual and/or contained indexscan nodes.
For safety, always recurse even if the BitmapHeapScan looks to be outer
reference free. Per reports from Michael Fuhr and Oleg Bartunov.