skewColType/skewColTypmod are no longer used in the wake of commit
9aab83fc5, and seem unlikely to be wanted in future, so let's drop 'em.
Discussion: https://postgr.es/m/16364.1494520862@sss.pgh.pa.us
Previously, we had the WITH clause in the middle of the command, where
you'd specify both generic options as well as statistic types. Few
people liked this, so this commit changes it to remove the WITH keyword
from that clause and makes it accept statistic types only. (We
currently don't have any generic options, but if we invent in the
future, we will gain a new WITH clause, probably at the end of the
command).
Also, the column list is now specified without parens, which makes the
whole command look more similar to a SELECT command. This change will
let us expand the command to supporting expressions (not just columns
names) as well as multiple tables and their join conditions.
Tom added lots of code comments and fixed some parts of the CREATE
STATISTICS reference page, too; more changes in this area are
forthcoming. He also fixed a potential problem in the alter_generic
regression test, reducing verbosity on a cascaded drop to avoid
dependency on message ordering, as we do in other tests.
Tom also closed a security bug: we documented that table ownership was
required in order to create a statistics object on it, but didn't
actually implement it.
Implement tab-completion for statistics objects. This can stand some
more improvement.
Authors: Alvaro Herrera, with lots of cleanup by Tom Lane
Discussion: https://postgr.es/m/20170420212426.ltvgyhnefvhixm6i@alvherre.pgsql
It turned out this approach had problems, because a DROP command should
not have any options other than CASCADE and RESTRICT. Instead, always
attempt to drop the slot if there is one configured, but also add an
ALTER SUBSCRIPTION action to set the slot to NONE.
Author: Petr Jelinek <petr.jelinek@2ndquadrant.com>
Reported-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://www.postgresql.org/message-id/29431.1493730652@sss.pgh.pa.us
Even though no actual tuples are ever inserted into a partitioned
table (the actual tuples are in the partitions, not the partitioned
table itself), we still need to have a ResultRelInfo for the
partitioned table, or per-statement triggers won't get fired.
Amit Langote, per a report from Rajkumar Raghuwanshi. Reviewed by me.
Discussion: http://postgr.es/m/CAKcux6%3DwYospCRY2J4XEFuVy0L41S%3Dfic7rmkbsU-GXhhSbmBg%40mail.gmail.com
We'd managed to avoid doing this so far, but it seems pretty obvious
that it would be forced on us some day, and this is much the cleanest
way of approaching the open problem that parallel-unsafe subplans are
being transmitted to parallel workers. Anyway there's no space cost
due to alignment considerations, and the time cost is pretty minimal
since we're just copying the flag from the corresponding Path node.
(At least in most cases ... some of the klugier spots in createplan.c
have to work a bit harder.)
In principle we could perhaps get rid of SubPlan.parallel_safe,
but I thought it better to keep that in case there are reasons to
consider a SubPlan unsafe even when its child plan is parallel-safe.
This patch doesn't actually do anything with the new flags, but
I thought I'd commit it separately anyway.
Note: although this touches outfuncs/readfuncs, there's no need for
a catversion bump because Plan trees aren't stored on disk.
Discussion: https://postgr.es/m/87tw5x4vcu.fsf@credativ.de
Commit 98e6e89040a0534ca26914c66cae9dd49ef62ad9 made inadequate
provision for the case of a single-page shared tidbitmap. It
allocate space for a shared PagetableEntry, but failed to
initialize it.
Report by Thomas Munro. Patch by Dilip Kumar, with some comment
changes by me.
Discussion: http://postgr.es/m/CAEepm=19Cmnfbi-j2Bw-a6yGPeHE1OVhKvvKz9bRBTJGKfGHMA@mail.gmail.com
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type. For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.
As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.
Patch by me, after an idea of Andrew Gierth's.
Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
If there can certainly be no more than one matching inner row for a given
outer row, then the executor can move on to the next outer row as soon as
it's found one match; there's no need to continue scanning the inner
relation for this outer row. This saves useless scanning in nestloop
and hash joins. In merge joins, it offers the opportunity to skip
mark/restore processing, because we know we have not advanced past the
first possible match for the next outer row.
Of course, the devil is in the details: the proof of uniqueness must
depend only on joinquals (not otherquals), and if we want to skip
mergejoin mark/restore then it must depend only on merge clauses.
To avoid adding more planning overhead than absolutely necessary,
the present patch errs in the conservative direction: there are cases
where inner_unique or skip_mark_restore processing could be used, but
it will not do so because it's not sure that the uniqueness proof
depended only on "safe" clauses. This could be improved later.
David Rowley, reviewed and rather heavily editorialized on by me
Discussion: https://postgr.es/m/CAApHDvqF6Sw-TK98bW48TdtFJ+3a7D2mFyZ7++=D-RyPsL76gw@mail.gmail.com
This is the SQL standard-conforming variant of PostgreSQL's serial
columns. It fixes a few usability issues that serial columns have:
- CREATE TABLE / LIKE copies default but refers to same sequence
- cannot add/drop serialness with ALTER TABLE
- dropping default does not drop sequence
- need to grant separate privileges to sequence
- other slight weirdnesses because serial is some kind of special macro
Reviewed-by: Vitaly Burovoy <vitaly.burovoy@gmail.com>
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution. At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs. The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.
An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.
Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.
The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.
An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement. No tests previously covered that
possibility, so one is added.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
Commit 45be99f8cd5d606086e0a458c9c72910ba8a613d removed GatherPath's
num_workers field, but this is entirely bogus. Normally, a path's
parallel_workers flag is supposed to indicate the number of workers
that it wants, and should be 0 for a non-partial path. In that
commit, I mistakenly thought that GatherPath could also use that field
to indicate the number of workers that it would try to start, but
that's disastrous, because then it can propagate up to higher nodes in
the plan tree, which will then get incorrect rowcounts because the
parallel_workers flag is involved in computing those values. Repair
by putting the separate field back.
Report by Tomas Vondra. Patch by me, reviewed by Amit Kapila.
Discussion: http://postgr.es/m/f91b4a44-f739-04bd-c4b6-f135bd643669@2ndquadrant.com
copyObject() is declared to return void *, which allows easily assigning
the result independent of the input, but it loses all type checking.
If the compiler supports typeof or something similar, cast the result to
the input type. This creates a greater amount of type safety. In some
cases, where the result is assigned to a generic type such as Node * or
Expr *, new casts are now necessary, but in general casts are now
unnecessary in the normal case and indicate that something unusual is
happening.
Reviewed-by: Mark Dilger <hornschnorter@gmail.com>
When creating an unshared TIDBitmap, we pass MCXT_ALLOC_HUGE to allow
allocations >1GB, so by analogy we pass DSA_ALLOC_HUGE for a shared
TIDBitmap.
Bug introduced by commit 98e6e89040a0534ca26914c66cae9dd49ef62ad9.
Report by Rafia Sabih, fix by Dilip Kumar, adjusted by me.
Discussion: http://postgr.es/m/CAOGQiiPpSnkuKq+oUK_bvQFg2EPGFPN8RwgxTgBa6HU_kQa3EA@mail.gmail.com
This extends the Aggregate node with two new features: HashAggregate
can now run multiple hashtables concurrently, and a new strategy
MixedAggregate populates hashtables while doing sorted grouping.
The planner will now attempt to save as many sorts as possible when
planning grouping sets queries, while not exceeding work_mem for the
estimated combined sizes of all hashtables used. No SQL-level changes
are required. There should be no user-visible impact other than the
new EXPLAIN output and possible changes to result ordering when ORDER
BY was not used (which affected a few regression tests). The
enable_hashagg option is respected.
Author: Andrew Gierth
Reviewers: Mark Dilger, Andres Freund
Discussion: https://postgr.es/m/87vatszyhj.fsf@news-spur.riddles.org.uk
Add support for explicitly declared statistic objects (CREATE
STATISTICS), allowing collection of statistics on more complex
combinations that individual table columns. Companion commands DROP
STATISTICS and ALTER STATISTICS ... OWNER TO / SET SCHEMA / RENAME are
added too. All this DDL has been designed so that more statistic types
can be added later on, such as multivariate most-common-values and
multivariate histograms between columns of a single table, leaving room
for permitting columns on multiple tables, too, as well as expressions.
This commit only adds support for collection of n-distinct coefficient
on user-specified sets of columns in a single table. This is useful to
estimate number of distinct groups in GROUP BY and DISTINCT clauses;
estimation errors there can cause over-allocation of memory in hashed
aggregates, for instance, so it's a worthwhile problem to solve. A new
special pseudo-type pg_ndistinct is used.
(num-distinct estimation was deemed sufficiently useful by itself that
this is worthwhile even if no further statistic types are added
immediately; so much so that another version of essentially the same
functionality was submitted by Kyotaro Horiguchi:
https://postgr.es/m/20150828.173334.114731693.horiguchi.kyotaro@lab.ntt.co.jp
though this commit does not use that code.)
Author: Tomas Vondra. Some code rework by Álvaro.
Reviewed-by: Dean Rasheed, David Rowley, Kyotaro Horiguchi, Jeff Janes,
Ideriha Takeshi
Discussion: https://postgr.es/m/543AFA15.4080608@fuzzy.czhttps://postgr.es/m/20170320190220.ixlaueanxegqd5gr@alvherre.pgsql
Add a column collprovider to pg_collation that determines which library
provides the collation data. The existing choices are default and libc,
and this adds an icu choice, which uses the ICU4C library.
The pg_locale_t type is changed to a union that contains the
provider-specific locale handles. Users of locale information are
changed to look into that struct for the appropriate handle to use.
Also add a collversion column that records the version of the collation
when it is created, and check at run time whether it is still the same.
This detects potentially incompatible library upgrades that can corrupt
indexes and other structures. This is currently only supported by
ICU-provided collations.
initdb initializes the default collation set as before from the `locale
-a` output but also adds all available ICU locales with a "-x-icu"
appended.
Currently, ICU-provided collations can only be explicitly named
collations. The global database locales are still always libc-provided.
ICU support is enabled by configure --with-icu.
Reviewed-by: Thomas Munro <thomas.munro@enterprisedb.com>
Reviewed-by: Andreas Karlsson <andreas@proxel.se>
Partitioned tables do not contain any data; only their unpartitioned
descendents need to be scanned. However, the partitioned tables still
need to be locked, even though they're not scanned. To make that
work, Append and MergeAppend relations now need to carry a list of
(unscanned) partitioned relations that must be locked, and InitPlan
must lock all partitioned result relations.
Aside from the obvious advantage of avoiding some work at execution
time, this has two other advantages. First, it may improve the
planner's decision-making in some cases since the empty relation
might throw things off. Second, it paves the way to getting rid of
the storage for partitioned tables altogether.
Amit Langote, reviewed by me.
Discussion: http://postgr.es/m/6837c359-45c4-8044-34d1-736756335a15@lab.ntt.co.jp
Commit b6fb534f added two new node fields but neglected to add copy and
comparison support for them, Mea culpa, should have checked for that.
per buildfarm animals with -DCOPY_PARSE_PLAN_TREES
In DDL commands referring to an existing function, allow omitting the
argument list if the function name is unique in its schema, per SQL
standard.
This uses the same logic that the regproc type uses for finding
functions by name only.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
Like Gather, we spawn multiple workers and run the same plan in each
one; however, Gather Merge is used when each worker produces the same
output ordering and we want to preserve that output ordering while
merging together the streams of tuples from various workers. (In a
way, Gather Merge is like a hybrid of Gather and MergeAppend.)
This works out to a win if it saves us from having to perform an
expensive Sort. In cases where only a small amount of data would need
to be sorted, it may actually be faster to use a regular Gather node
and then sort the results afterward, because Gather Merge sometimes
needs to wait synchronously for tuples whereas a pure Gather generally
doesn't. But if this avoids an expensive sort then it's a win.
Rushabh Lathia, reviewed and tested by Amit Kapila, Thomas Munro,
and Neha Sharma, and reviewed and revised by me.
Discussion: http://postgr.es/m/CAGPqQf09oPX-cQRpBKS0Gq49Z+m6KBxgxd_p9gX8CKk_d75HoQ@mail.gmail.com
The index is scanned by a single process, but then all cooperating
processes can iterate jointly over the resulting set of heap blocks.
In the future, we might also want to support using a parallel bitmap
index scan to set up for a parallel bitmap heap scan, but that's a
job for another day.
Dilip Kumar, with some corrections and cosmetic changes by me. The
larger patch set of which this is a part has been reviewed and tested
by (at least) Andres Freund, Amit Khandekar, Tushar Ahuja, Rafia
Sabih, Haribabu Kommi, Thomas Munro, and me.
Discussion: http://postgr.es/m/CAFiTN-uc4=0WxRGfCzs-xfkMYcSEWUC-Fon6thkJGjkh9i=13A@mail.gmail.com
XMLTABLE is defined by the SQL/XML standard as a feature that allows
turning XML-formatted data into relational form, so that it can be used
as a <table primary> in the FROM clause of a query.
This new construct provides significant simplicity and performance
benefit for XML data processing; what in a client-side custom
implementation was reported to take 20 minutes can be executed in 400ms
using XMLTABLE. (The same functionality was said to take 10 seconds
using nested PostgreSQL XPath function calls, and 5 seconds using
XMLReader under PL/Python).
The implemented syntax deviates slightly from what the standard
requires. First, the standard indicates that the PASSING clause is
optional and that multiple XML input documents may be given to it; we
make it mandatory and accept a single document only. Second, we don't
currently support a default namespace to be specified.
This implementation relies on a new executor node based on a hardcoded
method table. (Because the grammar is fixed, there is no extensibility
in the current approach; further constructs can be implemented on top of
this such as JSON_TABLE, but they require changes to core code.)
Author: Pavel Stehule, Álvaro Herrera
Extensively reviewed by: Craig Ringer
Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
When a shared iterator is used, each call to tbm_shared_iterate()
returns a result that has not yet been returned to any process
attached to the shared iterator. In other words, each cooperating
processes gets a disjoint subset of the full result set, but all
results are returned exactly once.
This is infrastructure for parallel bitmap heap scan.
Dilip Kumar. The larger patch set of which this is a part has been
reviewed and tested by (at least) Andres Freund, Amit Khandekar,
Tushar Ahuja, Rafia Sabih, Haribabu Kommi, and Thomas Munro.
Discussion: http://postgr.es/m/CAFiTN-uc4=0WxRGfCzs-xfkMYcSEWUC-Fon6thkJGjkh9i=13A@mail.gmail.com
The old function took function name and function argument list as
separate arguments. Now that all function signatures are passed around
as ObjectWithArgs structs, this is no longer necessary and can be
replaced by a function that takes ObjectWithArgs directly. Similarly
for aggregates and operators.
Reviewed-by: Jim Nasby <Jim.Nasby@BlueTreble.com>
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
In simpler times, it might have worked to refer to all kinds of objects
by a list of name components and an optional argument list. But this
doesn't work for all objects, which has resulted in a collection of
hacks to place various other nodes types into these fields, which have
to be unpacked at the other end. This makes it also weird to represent
lists of such things in the grammar, because they would have to be lists
of singleton lists, to make the unpacking work consistently. The other
problem is that keeping separate name and args fields makes it awkward
to deal with lists of functions.
Change that by dropping the objargs field and have objname, renamed to
object, be a generic Node, which can then be flexibly assigned and
managed using the normal Node mechanisms. In many cases it will still
be a List of names, in some cases it will be a string Value, for types
it will be the existing Typename, for functions it will now use the
existing ObjectWithArgs node type. Some of the more obscure object
types still use somewhat arbitrary nested lists.
Reviewed-by: Jim Nasby <Jim.Nasby@BlueTreble.com>
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
This makes the handling of operators similar to that of functions and
aggregates.
Rename node FuncWithArgs to ObjectWithArgs, to reflect the expanded use.
Reviewed-by: Jim Nasby <Jim.Nasby@BlueTreble.com>
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
The core of the functionality was already implemented when
pg_import_system_collations was added. This just exposes it as an
option in the SQL command.
This doesn't do anything to make Param nodes anything other than
parallel-restricted, so this only helps with uncorrelated subplans,
and it's not necessarily very cheap because each worker will run the
subplan separately (just as a Hash Join will build a separate copy of
the hash table in each participating process), but it's a first step
toward supporting cases that are more likely to help in practice, and
is occasionally useful on its own.
Amit Kapila, reviewed and tested by Rafia Sabih, Dilip Kumar, and
me.
Discussion: http://postgr.es/m/CAA4eK1+e8Z45D2n+rnDMDYsVEb5iW7jqaCH_tvPMYau=1Rru9w@mail.gmail.com
Even if we don't emit definitions for SH_ALLOCATE and SH_FREE, we
still need prototypes. The user can't define them before including
simplehash.h because SH_TYPE isn't available yet.
For the allocator to be able to access private_data, it needs to
become an argument to SH_CREATE. Previously we relied on callers
to set that after returning from SH_CREATE, but SH_CREATE calls
SH_ALLOCATE before returning.
Dilip Kumar, reviewed by me.
This is infrastructure for a pending patch to allow parallel bitmap
heap scans.
Dilip Kumar, reviewed (in earlier versions) by Andres Freund and
(more recently) by me. Some further renaming by me, also.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.
This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.
That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.
To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist. The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get
input from an underlying node.
We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.
While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e. continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones. We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.
As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.
Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node. As that's quite confusing, we're
likely to instead prohibit SRFs in those places. But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.
There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.
Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
In an RLS query, we must ensure that security filter quals are evaluated
before ordinary query quals, in case the latter contain "leaky" functions
that could expose the contents of sensitive rows. The original
implementation of RLS planning ensured this by pushing the scan of a
secured table into a sub-query that it marked as a security-barrier view.
Unfortunately this results in very inefficient plans in many cases, because
the sub-query cannot be flattened and gets planned independently of the
rest of the query.
To fix, drop the use of sub-queries to enforce RLS qual order, and instead
mark each qual (RestrictInfo) with a security_level field establishing its
priority for evaluation. Quals must be evaluated in security_level order,
except that "leakproof" quals can be allowed to go ahead of quals of lower
security_level, if it's helpful to do so. This has to be enforced within
the ordering of any one list of quals to be evaluated at a table scan node,
and we also have to ensure that quals are not chosen for early evaluation
(i.e., use as an index qual or TID scan qual) if they're not allowed to go
ahead of other quals at the scan node.
This is sufficient to fix the problem for RLS quals, since we only support
RLS policies on simple tables and thus RLS quals will always exist at the
table scan level only. Eventually these qual ordering rules should be
enforced for join quals as well, which would permit improving planning for
explicit security-barrier views; but that's a task for another patch.
Note that FDWs would need to be aware of these rules --- and not, for
example, send an insecure qual for remote execution --- but since we do
not yet allow RLS policies on foreign tables, the case doesn't arise.
This will need to be addressed before we can allow such policies.
Patch by me, reviewed by Stephen Frost and Dean Rasheed.
Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
This patch makes several changes that improve the consistency of
representation of lists of statements. It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list. This patch brings
similar consistency to the outputs of raw parsing and planning steps:
* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.
* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements. In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node. This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.
Now, every list of statements has a consistent head-node type depending
on how far along it is in processing. This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.
Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way. It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)
Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list. While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.
The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement. This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)
There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.
Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes. This allows
more intelligent handling of cases where a source query string contains
multiple statements. This patch doesn't actually do anything with the
information, but a follow-on patch will. (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)
catversion bump because addition of location fields to struct Query
affects stored rules.
This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.
Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
Now that it has only INH_NO and INH_YES values, it's just weird that
it's not a plain bool, so make it that way.
Also rename RangeVar.inhOpt to "inh", to be like RangeTblEntry.inh.
My recollection is that we gave it a different name specifically because
it had a different representation than the derived bool value, but it
no longer does. And this is a good forcing function to be sure we
catch any places that are affected by the change.
Bump catversion because of possible effect on stored RangeVar nodes.
I'm not exactly convinced that we ever store RangeVar on disk, but
we have a readfuncs function for it, so be cautious. (If we do do so,
then commit e13486eba was in error not to bump catversion.)
Follow-on to commit e13486eba.
Discussion: http://postgr.es/m/CA+TgmoYe+EG7LdYX6pkcNxr4ygkP4+A=jm9o-CPXyOvRiCNwaQ@mail.gmail.com
expandRTE() and get_rte_attribute_type() reported the exprType() and
exprTypmod() values of the expressions in the first row of the VALUES as
being the column type/typmod returned by the VALUES RTE. That's fine for
the data type, since we coerce all expressions in a column to have the same
common type. But we don't coerce them to have a common typmod, so it was
possible for rows after the first one to return values that violate the
claimed column typmod. This leads to the incorrect result seen in bug
#14448 from Hassan Mahmood, as well as some other corner-case misbehaviors.
The desired behavior is the same as we use in other type-unification
cases: report the common typmod if there is one, but otherwise return -1
indicating no particular constraint. It's cheap for transformValuesClause
to determine the common typmod while transforming a multi-row VALUES, but
it'd be less cheap for expandRTE() and get_rte_attribute_type() to
re-determine that info every time they're asked --- possibly a lot less
cheap, if the VALUES has many rows. Therefore, the best fix is to record
the common typmods explicitly in a list in the VALUES RTE, as we were
already doing for column collations. This looks quite a bit like what
we're doing for CTE RTEs, so we can save a little bit of space and code by
unifying the representation for those two RTE types. They both now share
coltypes/coltypmods/colcollations fields. (At some point it might seem
desirable to populate those fields for all RTE types; but right now it
looks like constructing them for other RTE types would add more code and
cycles than it would save.)
The RTE change requires a catversion bump, so this fix is only usable
in HEAD. If we fix this at all in the back branches, the patch will
need to look quite different.
Report: https://postgr.es/m/20161205143037.4377.60754@wrigleys.postgresql.org
Discussion: https://postgr.es/m/27429.1480968538@sss.pgh.pa.us
Table partitioning is like table inheritance and reuses much of the
existing infrastructure, but there are some important differences.
The parent is called a partitioned table and is always empty; it may
not have indexes or non-inherited constraints, since those make no
sense for a relation with no data of its own. The children are called
partitions and contain all of the actual data. Each partition has an
implicit partitioning constraint. Multiple inheritance is not
allowed, and partitioning and inheritance can't be mixed. Partitions
can't have extra columns and may not allow nulls unless the parent
does. Tuples inserted into the parent are automatically routed to the
correct partition, so tuple-routing ON INSERT triggers are not needed.
Tuple routing isn't yet supported for partitions which are foreign
tables, and it doesn't handle updates that cross partition boundaries.
Currently, tables can be range-partitioned or list-partitioned. List
partitioning is limited to a single column, but range partitioning can
involve multiple columns. A partitioning "column" can be an
expression.
Because table partitioning is less general than table inheritance, it
is hoped that it will be easier to reason about properties of
partitions, and therefore that this will serve as a better foundation
for a variety of possible optimizations, including query planner
optimizations. The tuple routing based which this patch does based on
the implicit partitioning constraints is an example of this, but it
seems likely that many other useful optimizations are also possible.
Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat,
Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova,
Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
We have had support for restrictive RLS policies since 9.5, but they
were only available through extensions which use the appropriate hooks.
This adds support into the grammer, catalog, psql and pg_dump for
restrictive RLS policies, thus reducing the cases where an extension is
necessary.
In passing, also move away from using "AND"d and "OR"d in comments.
As pointed out by Alvaro, it's not really appropriate to attempt
to make verbs out of "AND" and "OR", so reword those comments which
attempted to.
Reviewed By: Jeevan Chalke, Dean Rasheed
Discussion: https://postgr.es/m/20160901063404.GY4028@tamriel.snowman.net